phenolic hydroxyl
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 46)

H-INDEX

29
(FIVE YEARS 6)

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2279
Author(s):  
Jing Wei ◽  
Qian Liang ◽  
Yuxin Guo ◽  
Weimin Zhang ◽  
Long Wu

Since the deep cause for the anti-oxidation of carnosic acid (CA) against oleic acid (OA) remains unclear, we focused on exploring the CA inhibition mechanism via a combined experimental and computational study. Atomic charge, total molecular energy, phenolic hydroxyl bond dissociation enthalpy (BDE), the highest occupied molecular orbital (HOMO), and the lowest unoccupied orbital (LUMO) energy were first discussed by the B3LYP/6-31G (d,p) level, a density functional method. A one-step hydrogen atom transfer (HAT) was proposed for the anti-oxidation of CA towards OA, and the Rancimat method was carried out for analyzing the thermal oxidation stability. The results indicate that the two phenolic hydroxyl groups located at C7(O15) and C8(O18) of CA exert the highest activity, and the chemical reaction heat is minimal when HAT occurs. Consequently, the activity of C7(O15) (303.27 kJ/mol) is slightly lower than that of C8(O18) (295.63 kJ/mol), while the dissociation enthalpy of phenol hydroxyl groups is much lower than those of α-CH2 bond of OA (C8, 353.92 kJ/mol; C11, 353.72 kJ/mol). Rancimat method and non-isothermal differential scanning calorimetry (DSC) demonstrate that CA outcompetes tertiary butylhydroquinone (TBHQ), a synthetic food grade antioxidant, both in prolonging the oxidation induction period and reducing the reaction rate of OA. The Ea (apparent activation energies of reaction) of OA, TBHQ + OA, and CA + OA were 50.59, 57.32 and 66.29 kJ/mol, revealing that CA could improve the Ea and thermal oxidation stability of OA.


2021 ◽  
Vol 899 ◽  
pp. 739-744
Author(s):  
Indira N. Bakirova ◽  
Svetlana E. Mitrofanova

Thermal stability on air of polyurethane varnish coating prepared from diphenylolpropane, polyetherpolyol and polyisocyanate was assessed. The presence of urethane groups, formed by phenolic hydroxyl of diphenylolpropane, in the polymer structure was shown to decrease its thermooxidative degradation onset temperature. At the same time, deceleration of thermooxidative processes due to stabilizing effect of diphenylolpropane released at the beginning of thermal decay of polyurethane is observed in the higher temperature region.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4885
Author(s):  
Hiroyuki Takemura

This review focuses on the synthesis, structure, and interactions of metal ions, the detection of some weak interactions using the structure, and the construction of supramolecules of azacalixarenes that have been reported to date. Azacalixarenes are characterized by the presence of shallow or deep cavities, the simultaneous presence of a basic nitrogen atom and an acidic phenolic hydroxyl group, and the ability to introduce various side chains into the cyclic skeleton. These molecules can be given many functions by substituting groups on the benzene ring, modifying phenolic hydroxyl groups, and converting side chains. The author discusses the evidence of azacalixarene utilizing these characteristics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1790
Author(s):  
Jae Hoon Lee ◽  
Tae Min Kim ◽  
In-Gyu Choi ◽  
Joon Weon Choi

Alkaline soda lignin (AL) was sequentially fractionated into six fractions of different molecular size by means of solvent extraction and their phenolic hydroxyl groups were chemoselectively methylated to determine their effect on nanoparticle formation of lignin polymers. The effect of the lignin structure on the physical properties of nanoparticles was also clarified in this study. Nanoparticles were obtained from neat alkaline soda lignin (ALNP), solvent-extracted fractions (FALNPs, i.d. 414–1214 nm), and methylated lignins (MALNPs, i.d. 516–721 nm) via the nanoprecipitation method. Specifically, the size properties of MALNPs showed a high negative correlation (R2 = 0.95) with the phenolic hydroxyl group amount. This indicates that the phenolic hydroxyl groups in lignin could be influenced on the nucleation or condensation during the nanoprecipitation process. Lignin nanoparticles exhibited high colloidal stability, and most of them also showed good in vitro cell viability. This study presents a possible way to control nanoparticle size by blocking specific functional groups and decreasing the interaction between hydroxyl groups of lignin.


Author(s):  
Jinyan Yun ◽  
Liao Wei ◽  
Wei Li ◽  
Duqiang Gong ◽  
Hongyu Qin ◽  
...  

Lignin from different biomasses possess biological antioxidation and antimicrobial activities, which depend on the number of functional groups and the molecular weight of lignin. In this work, organosolv fractionation was carried out to prepare the lignin fraction with a suitable structure to tailor excellent biological activities. Gel permeation chromatography (GPC) analysis showed that decreased molecular weight lignin fractions were obtained by sequentially organosolv fractionation with anhydrous acetone, 50% acetone and 37.5% hexanes. Nuclear magnetic resonance (NMR) results indicated that the lignin fractions with lower molecular weight had fewer substructures and a higher phenolic hydroxyl content, which was positively correlated with their antioxidation ability. Both of the original lignin and fractionated lignins possessed the ability to inhibit the growth of Gram-negative bacteria (Escherichia coli and Salmonella) and Gram-positive bacteria (Streptococcus and Staphylococcus aureus) by destroying the cell wall of bacteria in vitro, in which the lignin fraction with the lowest molecular weight and highest phenolic hydroxyl content (L3) showed the best performance. Besides, the L3 lignin showed the ability to ameliorate Escherichia coli-induced diarrhea damages of mice to improve the formation of intestinal contents in vivo. These results imply that a lignin fraction with a tailored structure from bamboo lignin can be used as a novel antimicrobial agent in the biomedical field.


Synthesis ◽  
2021 ◽  
Author(s):  
Wei Xu ◽  
Miki Kohei ◽  
Masakatsu Shibasaki ◽  
Naoya Kumagai

C4N4 fluorophores comprise a recently disclosed new class of emissive organic molecules with modular synthetic capabilities. Herein we report a new synthetic protocol for asymmetrically diarylated C4N4 fluorescent materials. Direct monoarylation of 1-naphthol was exploited to suppress undesired diarylation and provide a free phenolic hydroxyl group for prospective linking to a molecule of interest. Installation of the second aromatic to acquire the fluorescent property was achieved by Suzuki-Miyaura cross-coupling.


Sign in / Sign up

Export Citation Format

Share Document