scholarly journals Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Properties

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1598
Author(s):  
Justyna Miedzianowska ◽  
Marcin Masłowski ◽  
Krzysztof Strzelec

Thermoplastic elastomer blends based on natural rubber (NR) and ethylene-vinyl acetate copolymer (EVA) with different weight ratios (30, 40, 50, 60 and 70 parts per hundred rubber (phr) of NR) and 10, 20 and 30 phr of straw were prepared and characterized. Current environmental problems were the motivation to produce this type of system, namely: the need to replace plastics at least partly with natural materials; increasing the amount of renewable raw materials and managing excess straw production. When using this bioadditive in traditional materials, the high processing temperature can be problematic, leading to the degradation of straw fibers. The solution can be polymer mixtures that are prepared at significantly lower temperatures. Scanning electron microscope (SEM) imaging was used to investigate the particle size of fibers and phase morphology of composites. Moreover, determination of the thermal properties of the filler and composites showed that the processing temperature used in the production of NR/EVA blends reduces the risk of degradation of the natural filler. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the filled composites. Finally, rheological tests of materials allow the determination of optimal processing parameters and properties of materials in dynamic conditions. The proposed blends exhibit elastic properties, and due to the lack of chemical cross-linking they can be processed and recycled like thermoplastics. In addition, they offset the disadvantages and combine the advantages of natural rubber and ethylene-vinyl acetate copolymer in the form of thermoplastic elastomeric biocomposites.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1739 ◽  
Author(s):  
Nappaphan Kunanusont ◽  
Chavakorn Samthong ◽  
Fan Bowen ◽  
Masayuki Yamaguchi ◽  
Anongnat Somwangthanaroj

Thermoplastic vulcanizate (TPV) has excellent elastomeric properties and can be reprocessed multiple times. TPV is typically produced by using the dynamic vulcanization (DV) method in which rubber is crosslinked simultaneously with thermoplastics. Peroxide-crosslinked TPV can increase the compatibility between rubber and thermoplastics but loses its reprocessability due to excess crosslinking in the latter. In this work, we overcome this obstacle by using a two-step mixing method to prepare fully crosslinked elastomers of ethylene vinyl acetate copolymer (EVA) and natural rubber (NR). Each sample formulation was prepared with three different mixing methods for comparison: NR-DV, Split-DV, and All-DV. For NR-DV, NR was crosslinked prior to the addition of EVA together with the thermal stabilizer (TS). For Split-DV, a small amount of EVA and NR was crosslinked prior to the addition of EVA and TS. In the All-DV method, EVA and NR were crosslinked, and then TS was added. The appearance and processability of the samples were affected by the degree of crosslinking. NR-DV showed a non-homogeneous texture. Although the samples of the All-DV method appeared homogeneous, their mechanical and rheological properties were inferior to those of the Split-DV method. The mechanical properties of the Split-DV samples were not significantly changed after reprocessing 10 times. Therefore, Split-DV is the preferred method for TPV production.


Sign in / Sign up

Export Citation Format

Share Document