trimethylolpropane triacrylate
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7814
Author(s):  
Alicja Balcerak ◽  
Janina Kabatc ◽  
Zbigniew Czech ◽  
Małgorzata Nowak ◽  
Karolina Mozelewska

The popularity of using the photopolymerization reactions in various areas of science and technique is constantly gaining importance. Light-induced photopolymerization is the basic process for the production of various polymeric materials. The key role in the polymerization reaction is the photoinitiator. The huge demand for radical and cationic initiators results from the dynamic development of the medical sector, and the optoelectronic, paints, coatings, varnishes and adhesives industries. For this reason, we dealt with the subject of designing new, highly-efficient radical photoinitiators. This paper describes novel photoinitiating systems operating in UV-Vis light for radical polymerization of acrylates. The proposed photoinitiators are composed of squaraine (SQ) as a light absorber and various diphenyliodonium (Iod) salts as co-initiators. The kinetic parameters of radical polymerization of trimethylolpropane triacrylate (TMPTA), such as the degree of double bonds conversion (C%), the rate of photopolymerization (Rp), as well as the photoinitiation index (Ip) were calculated. It was found that 2-aminobenzothiazole derivatives in the presence of iodonium salts effectively initiated the polymerization of TMPTA. The rates of polymerization were at about 2 × 10−2 s−1 and the degree of conversion of acrylate groups from 10% to 36% were observed. The values of the photoinitiating indexes for the most optimal initiator concentration, i.e., 5 × 10−3 M were in the range from 1 × 10−3 s−2 even to above 9 × 10−3 s−2. The photoinitiating efficiency of new radical initiators depends on the concentration and chemical structure of used photoinitiator. The role of squaraine-based photoinitiating systems as effective dyeing photoinitiators for radical polymerization is highlighted in this article.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3497
Author(s):  
Ricardo Acosta Ortiz ◽  
Jefferson Alberto Reynoza Dávila ◽  
Ramiro Guerrero Santos

This article describes a comprehensive study to obtain polymeric porous materials via a photopolymerization technique, using acrylate-based high internal phase emulsions (HIPEs), as a template. The aim of obtaining these polymers was to use them as hydrocarbon absorbing materials. Kinetics of photopolymerization of the acrylate monomers and of the HIPEs were conducted to optimize the process. The obtained monoliths were characterized by thermal analysis such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology and surface area were analyzed by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The compression properties of the materials were determined, as well as their absorption properties of hydrocarbons such as hexane, diesel, toluene and chloroform. The findings show that the acrylate-HIPEs displayed high reactivity photopolymerizing in 20 min. The glass transition temperature of the materials were in the range of 2 to 83 °C, depending on the ratio of acrylates in the photocurable formulation, displaying the characteristic morphology with voids and interconnecting windows. The polyHIPEs exhibited superior properties of absorption of the studied hydrocarbons. The order of capability of absorption was chloroform > toluene > hexane > diesel. The optimum absorbing material was that with trimethylolpropane triacrylate, ethylhexyl acrylate and isobornyl acrylate in a 1:0.9:2.1 ratio, which absorbed 778% of chloroform, 378% of toluene, 306 % of hexane and 236% of diesel.


Author(s):  
Jui-Teng Lin

The synergetic features of a three-component photoinitiating systems(A/B/C) based on the measured data and proposed mechanism of Liu et al are analyzed. The co-initiators/additivesB and C have dual-functions of : (i) regeneration of photoinitiator A, and (ii) generation of extra radicals for enhanced conversion efficacy (CE), the synergic effects lead to higher CE for both free radical polymerization(FRP) and cationic polymerization (CP). The CE of FRP has 3 terms due to the direct (tyep-I) coupling and two radicals. Therefore, it is always higher than that of CP having only one radical. The CE of CP has a transient state proportional to the effective absorption constnat (b), the light intensity (I) and initiator concentration (A0), but a steady state given independent to the light intensity (I). For the CE of FRP, the contribution from radical R could have two cases: (i)linear dependence on T'=bIA0, or (ii) nonlinear square root dependence T0.5. The nonlinear feature is due to the bimolecular termination term of k'R2.The key factors influencing the conversion efficacy are explored by analytic formulas. The synergetic effects lead to higher conversion of FRP and CP are consistent with the measured work. However, there are other theoretically predicted new features (findings) which are either not identified or explored experimentally including: (i) co-initiator [C] always enhances both FRP and CP conversions, whereas co-initiator [B] leads to more efficient FRP, but it also reduces CP. The specific systems analyzed are: benzophenonederivatives(A) ethyl 4-(dimethylamino)benzoate (B), and (4-tert-butylphenyl)iodonium hexafluorophosphate (C) under a UV (365 nm) LED irradiation; and two monomers of trimethylolpropane triacrylate (TMPTA, for FRP) and (3,4- epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate (EPOX, for CP).


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1195
Author(s):  
Anda Barkane ◽  
Oskars Platnieks ◽  
Maksims Jurinovs ◽  
Sigita Kasetaite ◽  
Jolita Ostrauskaite ◽  
...  

Typical resins for UV-assisted additive manufacturing (AM) are prepared from petroleum-based materials and therefore do not contribute to the growing AM industry trend of converting to sustainable bio-based materials. To satisfy society and industry’s demand for sustainability, renewable feedstocks must be explored; unfortunately, there are not many options that are applicable to photopolymerization. Nevertheless, some vegetable oils can be modified to be suitable for UV-assisted AM technologies. In this work, extended study, through FTIR and photorheology measurements, of the UV-curing of epoxidized acrylate from soybean oil (AESO)-based formulations has been performed to better understand the photopolymerization process. The study demonstrates that the addition of appropriate functional comonomers like trimethylolpropane triacrylate (TMPTA) and the adjusting of the concentration of photoinitiator from 1% to 7% decrease the needed UV-irradiation time by up to 25%. Under optimized conditions, the optimal curing time was about 4 s, leading to a double bond conversion rate (DBC%) up to 80% and higher crosslinking density determined by the Flory–Rehner empirical approach. Thermal and mechanical properties were also investigated via TGA and DMA measurements that showed significant improvements of mechanical performances for all formulations. The properties were improved further upon the addition of the reactive diluents. After the thorough investigations, the prepared vegetable oil-based resin ink formulations containing reactive diluents were deemed suitable inks for UV-assisted AM, giving their appropriate viscosity. The validation was done by printing different objects with complex structures using a laser based stereolithography apparatus (SLA) printer.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1398
Author(s):  
Yong-Qi Zhang ◽  
Xuan Wang ◽  
Ping-Lan Yu ◽  
Wei-Feng Sun

Trimethylolpropane triacrylate (TMPTA) as a photoactive crosslinker is grafted onto hydrophobic nanosilica surface through click chemical reactions of mercapto double bonds to prepare the functionalized nanoparticles (TMPTA-s-SiO2), which are used to develop TMPTA-s-SiO2/XLPE nanocomposites with improvements in mechanical strength and electrical resistance. The expedited aging experiments of water-tree growth are performed with a water-knife electrode and analyzed in consistence with the mechanical performances evaluated by means of dynamic thermo-mechanical analysis (DMA) and tensile stress–strain characteristics. Due to the dense cross-linking network of polyethylene molecular chains formed on the TMPTA-modified surfaces of SiO2 nanofillers, TMPTA-s-SiO2 nanofillers are chemically introduced into XLPE matrix to acquire higher crosslinking degree and connection strength in the amorphous regions between polyethylene lamellae, accounting for the higher water-tree resistance and ameliorated mechanical performances, compared with pure XLPE and neat-SiO2/XLPE nanocomposite. Hydrophilic TMPTA molecules grafted on the nano-SiO2 surface can inhibit the condensation of water molecules into water micro-beads at insulation defects, thus attenuating the damage of water micro-beads to polyethylene configurations under alternating electric fields and thus restricting water-tree growth in amorphous regions. The intensified interfaces between TMPTA-s-SiO2 nanofillers and XLPE matrix limit the segment motions of polyethylene molecular chains and resist the diffusion of water molecules in XLPE amorphous regions, which further contributes to the excellent water-tree resistance of TMPTA-s-SiO2/XLPE nanocomposites.


2020 ◽  
Vol 394 (1) ◽  
pp. 1900169
Author(s):  
William Godoy ◽  
Giulia Castro ◽  
Leonardo Nápolis ◽  
Juliana Carpegiani ◽  
Daniela Guimarães ◽  
...  

2020 ◽  
Vol 117 (9) ◽  
pp. 4527-4532 ◽  
Author(s):  
Lingyu Sun ◽  
Feika Bian ◽  
Yu Wang ◽  
Yuetong Wang ◽  
Xiaoxuan Zhang ◽  
...  

The manipulation of liquid droplets demonstrates great importance in various areas from laboratory research to our daily life. Here, inspired by the unique microstructure of plant stomata, we present a surface with programmable wettability arrays for droplets manipulation. The substrate film of this surface is constructed by using a coaxial capillary microfluidics to emulsify and pack graphene oxide (GO) hybridN-isopropylacrylamide (NIPAM) hydrogel solution into silica nanoparticles-dispersed ethoxylated trimethylolpropane triacrylate (ETPTA) phase. Because of the distribution of the silica nanoparticles on the ETPTA interface, the outer surface of the film could achieve favorable hydrophobic property under selective fluorosilane decoration. Owing to the outstanding photothermal energy transformation property of the GO, the encapsulated hydrophilic hydrogel arrays could shrink back into the holes to expose their hydrophobic surface with near-infrared (NIR) irradiation; this imparts the composite film with remotely switchable surface droplet adhesion status. Based on this phenomenon, we have demonstrated controllable droplet sliding on programmable wettability pathways, together with effective droplet transfer for printing with mask integration, which remains difficult to realize by existing techniques.


Sign in / Sign up

Export Citation Format

Share Document