scholarly journals Numerical Analysis of Keyhole and Weld Pool Behaviors in Ultrasonic-Assisted Plasma Arc Welding Process

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 703
Author(s):  
Junnan Qiao ◽  
Chuansong Wu ◽  
Yongfeng Li

The acoustic radiation force driving the plasma jet and the ultrasound reflection at the plasma arc-weld pool interface are considered to modify the formulas of gas shear stress and plasma arc pressure on the anode surface in ultrasonic-assisted plasma arc welding (U-PAW). A transient model taking into account the dynamic changes of heat flux, gas shear stress, and arc pressure on the keyhole wall is developed. The keyhole and weld pool behaviors are numerically simulated to predict the heat transfer and fluid flow in the weld pool and dynamic keyhole evolution process. The model is experimentally validated. The simulation results show that the acoustic radiation force increases the plasma arc velocity, and then increases both the plasma arc pressure and the gas shear stress on the keyhole wall, so that the keyholing capability is enhanced in U-PAW.

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1444
Author(s):  
Huu Loc Nguyen ◽  
Anh Van Nguyen ◽  
Han Le Duy ◽  
Thanh-Hai Nguyen ◽  
Shinichi Tashiro ◽  
...  

The material flow dynamic and velocity distribution on the melted domain surface play a crucial role on the joint quality and formation of welding defects. In this study, authors investigated the effects of the low and high currents of plasma arc welding on the material flow and thermodynamics of molten pool and its relationship to the welding defects. The high-speed video camera (HSVC) was used to observe the convection of the melted domain and welded-joint appearance. Furthermore, to consider the Marangoni force activation, the temperature on the melted domain was measured by a thermal HSVC. The results revealed that the velocity distribution on the weld pool surface was higher than that inside the molten weld pool. Moreover, in the case of 80 A welding current, the convection speed of molten was faster than that in other cases (120 A and 160 A). The serious undercut and humping could be seen on the top surface (upper side) and unstable weld bead was visualized on the back side (bottom surface). In the case of 160 A welding current, the convection on the weld pool surface was much more complex in comparison with 80 A and 120 A cases. The excessive convex defect at the bottom side and the concave defect at the top surface were observed. In the case of 120 A welding current, two convection patterns with the main flow in the backward direction were seen. Almost no welding defect could be found. The interaction between the shear force and Marangoni force played a solid state on the convection and heat transportation processes in the plasma arc welding process.


Author(s):  
J. Hu ◽  
H. L. Tsai

This article analyzes the dynamic process of groove filling and the resulting weld pool fluid flow in gas metal arc welding of thick metals with V-groove. Filler droplets carrying mass, momentum, thermal energy, and sulfur species are periodically impinged onto the workpiece. The complex transport phenomena in the weld pool, caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure, were investigated to determine the transient weld pool shape and distributions of velocity, temperature, and sulfur species in the weld pool. It was found that the groove provides a channel which can smooth the flow in the weld pool, leading to poor mixing between the filler metal and the base metal, as compared to the case without a groove.


2013 ◽  
Vol 651 ◽  
pp. 355-360 ◽  
Author(s):  
Yi Jiang ◽  
Ming Liu ◽  
Yao Hui Lu ◽  
Bin Shi Xu

Variable polarity plasma arc welding has been widely used to manufacture industries. The effects of welding current and plasma gas flow as the most important parameters on variable polarity plasma arc pressure were discussed experimentally. To welding current, two experimental were designed to discuss the effects of straight polarity current and reversed polarity current on arc pressure respectively. It could be concluded that arc pressure is quadratic with welding current. To plasma gas flow, both experimental and numerical analysis are used to discuss the mechanisms of plasma gas flow to arc pressure, and it could be conclude that arc pressure is quadratic with plasma gas flow rather than linear.


2018 ◽  
Vol 139 ◽  
pp. 623-635 ◽  
Author(s):  
Yanhui Feng ◽  
Junjie Zhou ◽  
Junjie Cai ◽  
Xinxin Zhang ◽  
Chuansong Wu

Author(s):  
Dongsheng Wu ◽  
Anh Van Nguyen ◽  
Shinichi Tashiro ◽  
Xueming Hua ◽  
Manabu Tanaka

Sign in / Sign up

Export Citation Format

Share Document