scholarly journals Austenite Grain Growth Analysis in a Welded Joint of High-Strength Martensitic Abrasion-Resistant Steel Hardox 450

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2850
Author(s):  
Łukasz Konat ◽  
Martyna Zemlik ◽  
Robert Jasiński ◽  
Dominika Grygier

The paper presents the results of tests of a welded joint of Hardox 450 steel, belonging to the group of weldable high-strength boron steels with increased resistance to abrasive wear. As a result of the conducted research, apart from the basic structural indicators, an attempt was made to determine the correlation between the grain size of the prior austenite in the characteristic weld zones and its basic mechanical properties, such as yield point, tensile strength, percentage elongation after fracture, reduction of area, and impact strength. The scope of research quoted above was carried out for a welded joint of the considered steel at delivery state (directly after welding), in the normalising annealed state, as well as in water-quenched state, using different austenitisation temperatures in the range of 900–1200 °C. The results obtained showed a large influence of the parameters of the applied thermal heat treatment on the selected structural and mechanical properties of the welded joint.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1004 ◽  
Author(s):  
Xianguang Zhang ◽  
Kiyotaka Matsuura ◽  
Munekazu Ohno

The occurrence of abnormal grain growth (AGG) of austenite during annealing is a serious problem in steels with carbide and/or nitride particles, which should be avoided from a viewpoint of mechanical properties. The effects of cold deformation prior to annealing on the occurrence of AGG have been investigated. It was found that the temperature range of the occurrence of AGG is shifted toward a low temperature region by cold deformation, and that the shift increases with the increase of the reduction ratio. The lowered AGG occurrence temperature is attributed to the fine and near-equilibrium AlN particles that are precipitated in the cold-deformed steel, which is readily dissolved during annealing. In contrast, coarse and non-equilibrium AlN particles precipitated in the undeformed steel, which is resistant to dissolution during annealing.


2019 ◽  
Vol 46 (1) ◽  
pp. 0102002
Author(s):  
环鹏程 Huan Pengcheng ◽  
王晓南 Wang Xiaonan ◽  
朱天才 Zhu Tiancai ◽  
陈文刚 Chen Wengang ◽  
胡增荣 Hu Zengrong ◽  
...  

1968 ◽  
Vol 10 (4) ◽  
pp. 329-336
Author(s):  
L. P. Pook

The results of tests on two high-strength steels, beryllium copper and perspex, together with some published data on high-strength steels were examined to see whether there was any relationship between the fracture mechanics parameter K1C and conventional mechanical properties. It was found that for steels and beryllium copper a correlation appeared to exist between K1C and the zero gauge length strain (= Z/(1 - Z) where Z is the reduction of area measured in a tensile test). It was also found that for constant, K1C was proportional to the square root of Young's modulus. The correlation band for steels was too wide for K1C to be estimated accurately from.


2013 ◽  
Vol 762 ◽  
pp. 165-170
Author(s):  
Andrey V. Chastukhin ◽  
Dmitry A. Ringinen ◽  
Grigory E. Khadeev ◽  
Leonid I. Efron

The effects of slab reheat temperature and soaking time are studied to characterize austenite grain growth, microstructure homogeneity and dissolution of precipitates in linepipe X80 grade steel. It is shown that the uniformity of austenite microstructure strongly depends on the slab reheat temperature and soaking time. With increasing reheat temperature an abnormal growth of individual grains is observed that stems from gradual dissolution of microalloy carbonitrides. As the result, individual grain boundaries become unpinned and mobile thus "nucleating" secondary recrystallization. The highest reheat temperature at which the dissolution kinetics of precipitates is still slow enough to prevent the onset of secondary recrystallization within long soaking times is 1160°C. The as reheated austenite microstructure and the character of austenite grain size distribution are inherited throughout the entire roughing rolling sequence and even further downstream to the finishing rolling entry. The effects of reheat soaking time on shear fracture area and impact toughness are also described.


2007 ◽  
Vol 25 (2) ◽  
pp. 55-61
Author(s):  
Bo-Young Jeong ◽  
In-Su Woo ◽  
Jeong-Kil Kim ◽  
Jong-Bong Lee

Sign in / Sign up

Export Citation Format

Share Document