scholarly journals Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5179
Author(s):  
Wei Zhang ◽  
Hongyu Chen ◽  
Xin Song ◽  
Tianyu Ma

Grain boundaries are thought to be the primary demagnetization sites of precipitate-hardening 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets with a unique cellular nanostructure, leading to a poor squareness factor as well as a much lower than ideal energy product. In this work, we investigated the grain boundary microstructure evolution of a model magnet Sm25Co46.9Fe19.5Cu5.6Zr3.0 (wt. %) during the aging process. The transmission electron microscopy (TEM) investigations showed that the grain boundary region contains undecomposed 2:17H, partially ordered 2:17R, 1:5H nano-precipitates, and a Smn+1Co5n−1 (n = 2, 1:3R; n = 3, 2:7R; n = 4, 5:19R) phase mixture at the solution-treated state. After short-term aging, further decomposition of 2:17H occurs, characterized by the gradual ordering of 2:17R, the precipitation of the 1:5H phase, and the gradual growth of Smn+1Co5n−1 compounds. Due to the lack of a defect-aggregated cell boundary near the grain boundary, the 1:5H precipitates are constrained between the 2:17R and the Smn+1Co5n−1 nano-sheets. When further aging the magnet, the grain boundary 1:5H precipitates transform into Smn+1Co5n−1 compounds. As the Smn+1Co5n−1 compounds are magnetically softer than the 1:5H precipitates, the grain boundaries then act as the primary demagnetization sites. Our work adds important insights toward the understanding of the grain boundary effect of 2:17-type Sm-Co-Fe-Cu-Zr magnets.

2005 ◽  
Vol 475-479 ◽  
pp. 4113-4116 ◽  
Author(s):  
Takahito Ohmura ◽  
Kaneaki Tsuzaki

Nanoindentation measurements were performed for Fe-C based martensitic steels, and then the strengthening factors such as grain boundary effect were evaluated. Nanohardness of the matrix of the martensite is lower than that expected from macroscopic hardness, indicating that the grain boundary effect is significant for the macroscopic strength of the Fe-C martensite. A remarkable decrease of the grain boundary effect was found at the tempering temperature of 673 K, which is due to a disappearance of film-like carbides on grain boundaries. These results will be discussed in light of the interpretations of grain boundary strengthening.


2010 ◽  
Vol 97 (17) ◽  
pp. 174101 ◽  
Author(s):  
Ming Li ◽  
Jie Yang ◽  
Karim Snoussi ◽  
Lixin Li ◽  
Huixin Wang ◽  
...  

1999 ◽  
Vol 14 (1) ◽  
pp. 120-123 ◽  
Author(s):  
D. J. Wang ◽  
J. Qiu ◽  
Y. C. Guo ◽  
Z. L. Gui ◽  
L. T. Li

Yttrium-doped (Sr0.45Pb0.55)TiO3 ceramics have been studied by complex impedance analysis. As a sort of NTC-PTC composite thermistor, it exhibited a significantly large negative temperature coefficient of resistivity below Tc in addition to the ordinary PTC characteristics above Tc. It is found that the NTC effect in NTC-PTC materials was not originated from the deep energy level of donor (bulk behavior), but from the electrical behavior of the grain boundary. Therefore, the NTC-PTC composite effect was assumed to be a grain boundary effect, and yttrium was a donor at shallow energy level. The NTC-PTC ceramics were grain boundary controlled materials.


1991 ◽  
Vol 32 (12) ◽  
pp. 1109-1114 ◽  
Author(s):  
Minoru Ichimura ◽  
Yasushi Sasajima ◽  
Mamoru Imabayashi

2003 ◽  
Vol 103 (2) ◽  
pp. 108-114 ◽  
Author(s):  
Ying Li ◽  
Mingshuai Liu ◽  
Jianghong Gong ◽  
Yunfa Chen ◽  
Zilong Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document