nanoindentation technique
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
H. Gonabadi ◽  
A. Oila ◽  
A. Yadav ◽  
S. Bull

Abstract Background Fatigue failure criteria for fibre reinforced polymer composites used in the design of marine structures are based on the micromechanical behaviour (e.g. stiffness properties) of their constituents. In the literature, there is a lack of information regarding the stiffness degradation of fibres, polymer matrix and fibre/matrix interface regions affected by environmental fatigue. Objective The aim of present study is to characterize the stiffness properties of composite constituents using the nanoindentation technique when fatigue failure of composites is due to the combined effect of sea water exposure and cyclic mechanical loads. Methods In the present study, the nanoindentation technique was used to characterize the stiffness properties of composite constituents where the effects of neighbouring phases, material pile up and viscoplasticity properties of the polymer matrix are corrected by finite element simulation. Results The use of finite element simulation in conjunction with nanoindentation test data, results in more accurate estimation of projected indented area which is required for measuring the properties of composite constituents. In addition, finite element simulation provides a greater understanding of the stress transfer between composite constituents during the nanoindentation process. Conclusions Results of nanoindentation testing on the composite microstructure of environmentally fatigue failed composite test coupons establish a strong link to the stiffness degradation of the fiber/matrix interface regions, verifying the degradation of composite constituents identified by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.


Author(s):  
Bhabatosh Biswas ◽  
Biplab Hazra ◽  
Nillohit Mukherjee ◽  
Arijit Sinha

Alkali-treated sisal fibre-incorporated silanized ZrO2 dispersed unsaturated polyester composites were fabricated with a filler loading of 5, 15, 25, 35, 45 wt%, respectively. The mechanical characterization of the composites was suitably executed at the sub-micron scale using the nanoindentation technique. Various mechanical properties were derived from the standard nanoindentation measurements namely, nanohardness, reduced modulus, recovery index, residual depth, wear rate and indentation creep, respectively. A marked improvement in the mechanical properties of the unsaturated polyester matrix due to the incorporation of the fillers (sisal and/or ZrO2) was observed through indentation-derived parameters namely, nanohardness (∼186%), reduced modulus (∼175%), recovery index (∼62%), wear rate (∼63%) and indentation creep (∼33%), respectively. A simulated dynamic mechanical analysis was performed using the sinus mode of the nanoindentation technique. A similar enhancement in the dynamic mechanical properties of the matrix was further observed through dynamic mechanical analysis as storage modulus (∼71%), loss modulus (∼60%), loss factor (∼150%) and specific damping coefficient (∼200%), respectively.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1879
Author(s):  
Takahito Ohmura ◽  
Masato Wakeda

The attractive strain burst phenomenon, so-called “pop-in”, during indentation-induced deformation at a very small scale is discussed as a fundamental deformation behavior in various materials. The nanoindentation technique can probe a mechanical response to a very low applied load, and the behavior can be mechanically and physically analyzed. The pop-in phenomenon can be understood as incipient plasticity under an indentation load, and dislocation nucleation at a small volume is a major mechanism for the event. Experimental and computational studies of the pop-in phenomenon are reviewed in terms of pioneering discovery, experimental clarification, physical modeling in the thermally activated process, crystal plasticity, effects of pre-existing lattice defects including dislocations, in-solution alloying elements, and grain boundaries, as well as atomistic modeling in computational simulation. The related non-dislocation behaviors are also discussed in a shear transformation zone in bulk metallic glass materials and phase transformation in semiconductors and metals. A future perspective from both engineering and scientific views is finally provided for further interpretation of the mechanical behaviors of materials.


Sign in / Sign up

Export Citation Format

Share Document