scholarly journals Chemical Properties of Human Dentin Blocks and Vertical Augmentation by Ultrasonically Demineralized Dentin Matrix Blocks on Scratched Skull without Periosteum of Adult-Aged Rats

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 105
Author(s):  
Bowen Zhu ◽  
Kenji Yokozeki ◽  
Md. Arafat Kabir ◽  
Masahiro Todoh ◽  
Toshiyuki Akazawa ◽  
...  

Vertical augmentation is one of the most challenging techniques in bone engineering. Several parameters, such mechano-chemical characteristics, are important to optimize vertical bone regeneration using biomaterials. The aims of this study were to chemically characterize human dentin blocks (calcified demineralized dentin matrix: CDM, partially demineralized dentin matrix: PDDM and completely demineralized dentin matrix: CDDM) (2 × 2 × 1 mm3) chemically and evaluate the behavior of PDDM blocks on non-scratched or scratched skulls without periosteum of adult rats (10–12 months old, female) as a vertical augmentation model. The dissolved efficiency of CDM showed 32.3% after ultrasonic demineralization in 1.0 L of 2% HNO3 for 30 min. The 30 min-demineralized dentin was named PDDM. The SEM images of PDDM showed the opening of dentinal tubes, nano-microcracks and the smooth surface. In the collagenase digestion test, the weight-decreasing rates of CDM, PDDM and CDDM were 9.2%, 25.5% and 78.3% at 12 weeks, respectively. CDM inhibited the collagenase digestion, compared with PDDM and CDDM. In the PDDM onlay graft on an ultrasonically scratched skull, the bone marrow-space opening from original bone was found in the bony bridge formation between the human PDDM block and dense skull of adult senior rats at 4 and 8 weeks. On the other hand, in the cases of the marrow-space closing in both non-scratched skulls and scratched skulls, the bony bridge was not formed. The results indicated that the ultrasonic scratching into the compact parietal bone might contribute greatly to the marrow-space opening from skull and the supply of marrow cells, and then bony bridge formation could occur in the vertical augmentation model without a periosteum.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2166
Author(s):  
Jeong-Kui Ku ◽  
In-Woong Um ◽  
Mi-Kyoung Jun ◽  
Il-hyung Kim

An autogenous, demineralized, dentin matrix is a well-known osteo-inductive bone substitute that is mostly composed of type I collagen and is widely used in implant dentistry. This single case report describes a successful outcome in guided bone regeneration and dental implantation with a novel human-derived collagen membrane. The authors fabricated a dentin-derived-barrier membrane from a block-type autogenous demineralized dentin matrix to overcome the mechanical instability of the collagen membrane. The dentin-derived-barrier acted as an osteo-inductive collagen membrane with mechanical and clot stabilities, and it replaced the osteo-genetic function of the periosteum. Further research involving large numbers of patients should be conducted to evaluate bone forming capacity in comparison with other collagen membranes.


2018 ◽  
Vol 8 (8) ◽  
pp. 1288 ◽  
Author(s):  
Gyu-Un Jung ◽  
Tae-Hyun Jeon ◽  
Mong-Hun Kang ◽  
In-Woong Um ◽  
In-Seok Song ◽  
...  

The aim of this study was to evaluate the clinical, volumetric, radiographic, and histologic aspects of autogenous demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) used for ridge preservation, compared to those of deproteinized bovine bone with collagen (DBBC). Following atraumatic extraction, the socket was filled with DBBC, DDM, or rhBMP-2/DDM. Scanned images of dental casts and cone beam computed tomographs (CBCT) were superimposed for the calculation of soft and hard tissue volume alteration. Preoperative and postoperative measurements of the height and width of the alveolar ridge were compared using CBCT images. After 4 months, bone specimens were harvested for histomorphometric assessment. Loss of hard and soft tissue volume occurred at 4 months after extraction and ridge preservation in all groups. No volumetric differences were detected among the three groups before and 4 months after ridge preservation. The reduction in the horizontal width at 5 mm was higher in the DBBC compared to the DDM. Histologically, approximately 40% newly formed bone was founded in rhBMP-2/DDM group. The autogenous dentin matrix used to fill the socket was as beneficial for ridge preservation as conventional xenografts. The combination of rhBMP-2 with dentin matrix also demonstrated appreciable volumetric stability and higher new bone formation compared to DDM alone and DBBC.


2021 ◽  
Vol 5 (4) ◽  
pp. 214-218
Author(s):  
Mahadeepa Kar ◽  
Ashish Gupta ◽  
N Srinath ◽  
Umashankar DN ◽  
Mahesh Kumar ◽  
...  

2020 ◽  
Vol 46 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Mayumi Umebayashi ◽  
Seigo Ohba ◽  
Tadafumi Kurogi ◽  
Sawako Noda ◽  
Izumi Asahina

Autogenous partially demineralized dentin matrix (APDDM) has been reportedly used as a superior bone graft material. A 52-year-old Japanese man who exhibited severe periodontitis was referred for oral rehabilitation. He underwent wide-range anterior maxillary alveolar bone and bilateral sinus floor augmentation by grafting of a mixture of APDDM and particulate cancellous bone and marrow (PCBM); subsequently, he underwent implant-supported full arch rehabilitation. He has been followed up for 4 years after placement of the final restoration without any complications, and his physiological bone volume has been maintained. APDDM constitutes an alternative treatment that may increase the volume of graft material and might prevent rapid resorption of PCBM, because APDDM served as a scaffold for osteoblasts from PCBM. When possible, it may be useful to apply APDDM as a graft material with PCBM for large-volume alveolar bone regeneration.


1998 ◽  
Vol 14 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Yi Zhang ◽  
Kelli Agee ◽  
Jacques Nör ◽  
Ricardo Carvalho ◽  
Bhupinder Sachar ◽  
...  

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Neema Bakhshalian ◽  
Shirin Hooshmand ◽  
Sara Chelland Campbell ◽  
Sheau Ching Chai ◽  
Bahram H Arjmandi

Sign in / Sign up

Export Citation Format

Share Document