barrier membrane
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 76)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qingjie Lin ◽  
Yong Zhang ◽  
Yanguo Liu

Oral repair membrane guided oral bone regeneration, particularly in dental implants, is a guided regeneration technology for bone tissue. The principle is based on the characteristics of rapid migration of epithelial cells and fibroblasts and slower migration of osteoblasts. Materials are placed in the bone defect, creating a relatively closed environment which is conducive to the growth of bone tissue. In this paper, we have evaluated clinical effects of Hai’ao oral repair membrane as a barrier membrane to guide bone regeneration in implants. For this purpose, certain treatment data are collected through data mining and patient’s names with bone defects in the implantation area are selected. According to the randomness principles, these patients are divided into experimental and control groups and preoperative examinations along with basic periodontal treatments are performed on the selected cases. Furthermore, we have analyzed different effects by comparing treatment conditions. Experimental results, as a technical shielding film, verify that Hai’ao oral repair membrane meets requirements of safety and no immune rejection. It plays a role in promoting bone formation around the implant. Mid-to-long-term follow-up is satisfactory with no related complications. At the same time, it has the advantages of simple operation, reduced patient suffering, convenient transportation and storage, and longer validity period. Compared with the control group in terms of safety evaluation of postoperative vital signs, laboratory examinations, and incision healing, Hai’ao oral repair membrane has no significant difference. Postoperative osteogenesis effect is equivalent to that of the control group and meets requirements of superiority. Hai’ao oral repair membrane is used as a shielding membrane material in implant surgery technology to guide bone regeneration.


Author(s):  
Patrick Rider ◽  
Željka Perić Kačarević ◽  
Akiva Elad ◽  
Drazen Tadic ◽  
Daniel Rothamel ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 127
Author(s):  
Nicola Ottenbacher ◽  
Said Alkildani ◽  
Tadas Korzinskas ◽  
Jens Pissarek ◽  
Christian Ulm ◽  
...  

GBR (guided bone regeneration) is a standard procedure for building up bony defects in the jaw. In this procedure, resorbable membranes made of bovine and porcine collagen are increasingly being used, which, in addition to many possible advantages, could have the potential disadvantage of a shorter barrier functionality, especially when augmenting large-volume defects. Thus, it is of importance to evaluate the integration behavior and especially the standing time of barrier membranes using specialized methods to predict its respective biocompatibility. This study is intended to establish a new histomorphometrical analysis method to quantify the integration rate of collagen-based barrier membranes. Three commercially available barrier membranes, i.e., non-crosslinked membranes (BioGide® and Jason® membrane), a ribose-crosslinked membrane (Ossix® Plus), and a newly developed collagen–hyaluronic acid-based (Coll-HA) barrier membrane were implanted in the subcutaneous tissue of 48 6–8-week-old Wistar rats. The explants, after three timepoints (10, 30, and 60 days), were processed and prepared into histological sections for histopathological (host tissue response) and histomorphometrical (cellular invasion) analyses. 10 days after implantation, fragmentation was not evident in any of the study groups. The sections of the Coll-HA, Jason® and BioGide® membranes showed a similar mild inflammatory reaction within the surrounding tissue and an initial superficial cell immigration. Only in the Ossix® Plus group very little inflammation and no cell invasion was detected. While the results of the three commercially available membranes remained intact in the further course of the study, only fragments of the Coll-HA membrane were found 30 and 60 days after implantation. Histomorphometrically, it can be described that although initially (at 10 days post-implantation) similar results were found in all study groups, after 30 days post-implantation the cellular penetration depth of the hyaluronic acid-collagen membrane was significantly increased with time (**** p < 0.0001). Similarly, the percentage of cellular invasion per membrane thickness was also significantly higher in the Coll-HA group at all timepoints, compared to the other membranes (**** p < 0.0001). Altogether, these results show that the histomorphometrical analysis of the cellular migration can act as an indicator of integration and duration of barrier functionality. Via this approach, it was possible to semi-quantify the different levels of cellular penetration of GBR membranes that were only qualitatively analyzed through histopathological approaches before. Additionally, the results of the histopathological and histomorphometrical analyses revealed that hyaluronic acid addition to collagen does not lead to a prolonged standing time, but an increased integration of a collagen-based biomaterial. Therefore, it can only partially be used in the dental field for indications that require fast resorbed membranes and a fast cell or tissue influx such as periodontal regeneration processes.


PRILOZI ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 103-108
Author(s):  
Darko Veljanovski ◽  
Denis Baftijari ◽  
Zoran Susak ◽  
Aneta Atanasovska Stojanovska

Abstract Guided bone regeneration (GBR) is a therapeutic modality to achieve bone regeneration with the use of barrier membranes. The use of deproteinized bovine bone material (DBBM) for ridge preservation allows the preservation of the edentulous ridge dimensions. Here, we present a case of horizontal GBR using DBBM and a resorbable membrane, with simultaneous implant placement. Simultaneously, ridge preservation of the pontic area, using DBBM within a “socket seal” procedure was performed. Two implants were places at sites 23 and 26 to support a fixed partial denture (FPD). The mesial implant showed exposed buccal threads, which were then covered with autogenous bone particles and small size granules of DBBM. The collagen membrane was stabilized with periosteal mattress suture. Six months postoperatively, CBCT images revealed a stable buccal bone layer at the implant site, indicating a successful GBR procedure. At this point in time, tooth 24 was atraumatically extracted. A ridge preservation was done utilizing DBBM, and a soft tissue graft form the tuber. A ceramic-metal FPD with excellent “white aesthetics” and a harmonic transition zone to the soft tissue was fabricated. At 3 years follow up, the peri-implant bone levels were stable, and the clinical outcomes were excellent. It is concluded that a GBR procedure, utilizing DBBM and a collagen barrier membrane with simultaneous implant placement, as well as ridge preservation using DBBM, are predictable therapeutic methods. However, gentle manipulation of the soft tissues, and wound stability, with tension-free passive closure of the wound margins are prerequisites for a long-term clinical success.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1130
Author(s):  
Marwa Alazzawi ◽  
Nabeel Kadim Abid Alsahib ◽  
Hilal Turkoglu Sasmazel

Glycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its β polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(ε-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 ± 82 nm and microscale pore size of 6.803 ± 0.035 μm. Moreover, the wettability of 47.4 ± 2.2° contact angle (C.A) and mechanical properties of 135 ± 3.05 MPa average modulus of elasticity, 4.57 ± 0.04 MPa average ultimate tensile stress (UTS), and 39.43% ± 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of β-Gly.


2021 ◽  
Vol 11 (3) ◽  
pp. 308-314
Author(s):  
Timur V. Melkumyan ◽  
Nuritdin Kh. Kamilov ◽  
Fatima Yu. Daurova ◽  
Angela D. Dadamova

Background: There are a large number of different types of bone-grafting materials that are used for the regeneration of atrophied alveolar ridges in order to make dental implantation possible. However, available surgical techniques and materials for bone augmentation do not contribute to the achievement of the desired reliable results and require a search for new solutions to an existing problem. A group of synthetic osteoplastic materials based on bioactive glass (BAG) may become a matter of choice in bone tissue regeneration because of special osteogenic properties. The aim of this study was to visually and histologically evaluate the behavior of an experimental BAG in rabbit tibia bone samples, which were collected from the animal 6 weeks after filling the bone defects. Methods and Results: The observation was carried out on one outbred rabbit whose tibia bone defects were filled with an experimental osteoplastic material based on the BAG. The chemical composition of the experimental osteoplastic material included SiO2 (41%), Na2O (21%), CaO (28.5%), P2O5 (6%), CaF2 (1.5%), MgO (1%), Al2O3 (1%). For histological analysis, H&E staining of paraffin-embedded tissues was performed according to the standard technique. Light microscopy of tissue samples was performed using a Leitz HM-LUX microscope (Germany). Six weeks after filling the bone defects, a strong bond between the augmented hard tissue and rabbit tibia was recognized. Also, a dense fusion of adjacent soft tissues with a newly formed bone without signs of chronic inflammation or graft particles in granular tissue was noted. Microscopic examination of the stained sections showed the presence of mature viable BT with a uniform distribution of osteocytes. Also, residual fragments of the degraded biomaterial surrounded by the fibers of a woven bone were revealed in several slices. Conclusion: In accordance with the results of this experiment, it can be concluded that the usage of BAG related to the system SiO2(41%)-Na2O(21%)-CaO(28.5%)-P2O5(6%)-CaF2(1.5%)-MgO(1%)-Al2O3(1%) may increase the volume of bone without application of barrier membrane. However, further research involving more animals needs to be done to estimate the scientific significance of the obtained data and to evaluate the mechanical properties of augmented bone.


Author(s):  
S. Rajabzadeh ◽  
M. Esponda ◽  
L. Cordero Espinosa

Abstract. This paper presents a comparative approach between a digital documentation workflow using contemporary tools versus a traditional documentation technique for Felix Candela's hyperbolic paraboloid (hypar) modern heritage building: Cosmic Rays Pavilion. This documentation was undertaken to better understand the building’s structure, its evolution, and to assess the performance of this concrete structure for future seismic and damage analysis. Furthermore, the paper discusses the challenges related to producing a Heritage Building Information Model (HBIM) of this building using point cloud data in Autodesk’s Revit BIM-authoring software. This project states the importance of a parallel study between the traditional and the contemporary documentation methods; which led to discoveries about the current state of the extrados in the hypar after several earthquakes. Upon analyzing the HBIM and comparing it to the historical drawings, a gap was discovered between the moisture barrier membrane and the concrete shell. Visualizing the building in 3D provides a deeper and more accurate understanding of the current state of this pavilion and is one of many advantages of using digital technologies. The insights provided by digital documentation techniques and analyzing the historical images of the pavilion showed that the curvature of the pavilion has been modified over time. The results imply two hypotheses. First, the curvature profile has been altered due to earthquakes. Second, the modification is due to improper maintenance of the pavilion, namely, multiple additions of the membrane layers. This could not have been detected by solely relying on traditional documentation techniques.


Sign in / Sign up

Export Citation Format

Share Document