scholarly journals Dentin-Derived-Barrier Membrane in Guided Bone Regeneration: A Case Report

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2166
Author(s):  
Jeong-Kui Ku ◽  
In-Woong Um ◽  
Mi-Kyoung Jun ◽  
Il-hyung Kim

An autogenous, demineralized, dentin matrix is a well-known osteo-inductive bone substitute that is mostly composed of type I collagen and is widely used in implant dentistry. This single case report describes a successful outcome in guided bone regeneration and dental implantation with a novel human-derived collagen membrane. The authors fabricated a dentin-derived-barrier membrane from a block-type autogenous demineralized dentin matrix to overcome the mechanical instability of the collagen membrane. The dentin-derived-barrier acted as an osteo-inductive collagen membrane with mechanical and clot stabilities, and it replaced the osteo-genetic function of the periosteum. Further research involving large numbers of patients should be conducted to evaluate bone forming capacity in comparison with other collagen membranes.

2020 ◽  
Vol 10 (13) ◽  
pp. 4661
Author(s):  
In-Woong Um ◽  
Jeong-Kui Ku ◽  
Yu-Mi Kim ◽  
Pil-Young Yun ◽  
Na-Hee Chang ◽  
...  

Autogenous and allogeneic demineralized dentin matrices (Auto-DDM and Allo-DDM, respectively) are currently used for guided bone regeneration (GBR). Buccal marginal bone (BMB) resorption is critical for successful implant integration. This study analyzed BMB resorption around dental implants for GBR between the control group (Auto-DDM graft) and experimental group (Allo-DDM graft). From 2014 to 2019, we enrolled 96 patients (59 males, 37 females, average 57.13 years) who received GBR (52 and 44 using Allo-DDM and Auto-DDM, respectively,) without a barrier membrane and a simultaneous single dental implantation (54 in the maxilla and 42 in the mandible). BMB height was measured immediately after GBR, at prosthetic loading, and 12 months after loading. BMB resorption was classified as initial resorption (between GBR and prosthetic loading) and functional resorption (during 12 months after prosthetic loading). The differences in the BMB levels of Auto-DDM and Allo-DDM were analyzed between the initial and functional resorption stages by independent sample t-test. Auto-DDM and Allo-DDM showed similar BMB changes in initial resorption (0.73 ± 0.97 and 0.72 ± 0.77 mm, respectively) and functional resorption (0.69 ± 0.81 and 0.48 ± 0.58 mm, respectively) without a significant difference between the maxilla and mandible. For GBR, Allo-DDM is comparable to Auto-DDM in terms of BMB resorption.


2012 ◽  
Vol 38 (S1) ◽  
pp. 533-537 ◽  
Author(s):  
Maria A. Peñarrocha ◽  
Jose A. Vina ◽  
Laura Maestre ◽  
David Peñarrocha-Oltra

The aim is to describe bilateral vertical ridge augmentation with intraoral block grafts and guided bone regeneration in the posterior mandible in preparation for implant placement. A 61-year-old woman, edentulous in the posterior mandible, presented for implant rehabilitation. The radiographic study showed 3 to 6 mm of bone height from the ridge to the mandibular canal. Autogenous bone block grafts from the chin and the mandibular ramus, harvested with ultrasonics, were used to augment the alveolar ridge. To reduce resorption, the grafts were covered with particulate alloplastic material and a collagen membrane. Delayed implants were placed 6 months after vertical augmentation, and 3 months later implants were loaded with a fixed prosthesis. A temporary sensory complication occurred, but 12 months after implant loading, there were no failures. In this case report block bone grafting was a feasible option to vertically augment the alveolar ridge in the posterior mandible.


2014 ◽  
Vol 23 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Young-Kyun Kim ◽  
In-Woong Um ◽  
Hyo-Jun An ◽  
Kyung-Wook Kim ◽  
Ki-Seok Hong ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 185
Author(s):  
Eleni Kapogianni ◽  
Said Alkildani ◽  
Milena Radenkovic ◽  
Xin Xiong ◽  
Rumen Krastev ◽  
...  

Collagen-based barrier membranes are an essential component in Guided Bone Regeneration (GBR) procedures. They act as cell-occlusive devices that should maintain a micromilieu where bone tissue can grow, which in turn provides a stable bed for prosthetic implantation. However, the standing time of collagen membranes has been a challenging area, as native membranes are often prematurely resorbed. Therefore, consolidation techniques, such as chemical cross-linking, have been used to enhance the structural integrity of the membranes, and by consequence, their standing time. However, these techniques have cytotoxic tendencies and can cause exaggerated inflammation and in turn, premature resorption, and material failures. However, tissues from different extraction sites and animals are variably cross-linked. For the present in vivo study, a new collagen membrane based on bovine dermis was extracted and compared to a commercially available porcine-sourced collagen membrane extracted from the pericardium. The membranes were implanted in Wistar rats for up to 60 days. The analyses included well-established histopathological and histomorphometrical methods, including histochemical and immunohistochemical staining procedures, to detect M1- and M2-macrophages as well as blood vessels. Initially, the results showed that both membranes remained intact up to day 30, while the bovine membrane was fragmented at day 60 with granulation tissue infiltrating the implantation beds. In contrast, the porcine membrane remained stable without signs of material-dependent inflammatory processes. Therefore, the bovine membrane showed a special integration pattern as the fragments were found to be overlapping, providing secondary porosity in combination with a transmembraneous vascularization. Altogether, the bovine membrane showed comparable results to the porcine control group in terms of biocompatibility and standing time. Moreover, blood vessels were found within the bovine membranes, which can potentially serve as an additional functionality of barrier membranes that conventional barrier membranes do not provide.


PRILOZI ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 103-108
Author(s):  
Darko Veljanovski ◽  
Denis Baftijari ◽  
Zoran Susak ◽  
Aneta Atanasovska Stojanovska

Abstract Guided bone regeneration (GBR) is a therapeutic modality to achieve bone regeneration with the use of barrier membranes. The use of deproteinized bovine bone material (DBBM) for ridge preservation allows the preservation of the edentulous ridge dimensions. Here, we present a case of horizontal GBR using DBBM and a resorbable membrane, with simultaneous implant placement. Simultaneously, ridge preservation of the pontic area, using DBBM within a “socket seal” procedure was performed. Two implants were places at sites 23 and 26 to support a fixed partial denture (FPD). The mesial implant showed exposed buccal threads, which were then covered with autogenous bone particles and small size granules of DBBM. The collagen membrane was stabilized with periosteal mattress suture. Six months postoperatively, CBCT images revealed a stable buccal bone layer at the implant site, indicating a successful GBR procedure. At this point in time, tooth 24 was atraumatically extracted. A ridge preservation was done utilizing DBBM, and a soft tissue graft form the tuber. A ceramic-metal FPD with excellent “white aesthetics” and a harmonic transition zone to the soft tissue was fabricated. At 3 years follow up, the peri-implant bone levels were stable, and the clinical outcomes were excellent. It is concluded that a GBR procedure, utilizing DBBM and a collagen barrier membrane with simultaneous implant placement, as well as ridge preservation using DBBM, are predictable therapeutic methods. However, gentle manipulation of the soft tissues, and wound stability, with tension-free passive closure of the wound margins are prerequisites for a long-term clinical success.


2018 ◽  
Vol 51 (4) ◽  
pp. 194
Author(s):  
Desi Sandra Sari ◽  
Ernie Maduratna ◽  
F. Ferdiansyah ◽  
I Ketut Sudiana ◽  
Fedik Abdul Rantam

Background: Demineralized dentin matrix (DDM) scaffold is a substitute material for the bone contained in human teeth. DDM is a scaffold-derived tooth dentine containing type I collagen and bone morphogenetic protein (BMP). While DDM possesses the ability to perform osteoinductive and osteoconductive roles, a cytotoxicity test of DDM scaffold remains extremely important in evaluating the level of toxicity of a material if cultured in cells. Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent in nature because they contain progenitor cells and have the potential for differentiation via adipogenic, osteogenic and chondrogenic pathways. ADMSCs are also known to have high biocompatibility and the ability to combine with other bone material. Purpose: The purpose of this study was to determine the cytotoxicity and characteristics of DDM scaffolds derived from bovine teeth in the ADMSCs of rats cultured in vitro. Methods: This research constituted an experimental study. ADMSCs were isolated from the inguinal fat of rats. Thereafter, DDM was extracted from bovine teeth and formed 355-710 μm-sized particles. DDM scaffolds were assessed using SEM and the effects of DDM scaffolds on the cell viability of ADMSCs at concentrations of 10%, 50%, and 100% analyzed by means of 3-4,5’dimethylihiazol-2-yl,2.5-di-phenyl-tetrazolium bromide (MTT) assay. The results obtained were then analyzed by an ANOVA to establish the difference between the groups. Results: SEM results showed the diameter sizes of the dental tubulis DDM scaffolds to be approximately 4.429 μm and 7.519 μm. The highest cell viability (97.08%) was found by means of an MTT test to be in ADMSCs at a concentration of 10% compared to those at concentrations of 50% and 100%. Conclusion: In conclusion, DDM scaffold derived from bovine teeth with a particle size of 355-710 μm produces a low cytotoxicity effect on ADMSCs.


2018 ◽  
Vol 19 (10) ◽  
pp. 2952 ◽  
Author(s):  
Tadas Korzinskas ◽  
Ole Jung ◽  
Ralf Smeets ◽  
Sanja Stojanovic ◽  
Stevo Najman ◽  
...  

The use of non-resorbable polytetrafluoroethylene (PTFE) membranes is indicated for the treatment of large, non-self-containing bone defects, or multi-walled defects in the case of vertical augmentations. However, less is known about the molecular basis of the foreign body response to PTFE membranes. In the present study, the inflammatory tissue responses to a novel high-density PTFE (dPTFE) barrier membrane have preclinically been evaluated using the subcutaneous implantation model in BALB/c mice by means of histopathological and histomorphometrical analysis methods and immunohistochemical detection of M1- and M2-macrophages. A collagen membrane was used as the control material. The results of the present study demonstrate that the tissue response to the dPTFE membrane involves inflammatory macrophages, but comparable cell numbers were also detected in the implant beds of the control collagen membrane, which is known to be biocompatible. Although these data indicate that the analyzed dPTFE membrane is not fully bioinert, but its biocompatibility is comparable to collagen-based membranes. Based on its optimal biocompatibility, the novel dPTFE barrier membrane may optimally support bone healing within the context of guided bone regeneration (GBR).


Sign in / Sign up

Export Citation Format

Share Document