scholarly journals Seismic Performance Evaluation of RC Columns Retrofitted by 3D Textile Reinforced Mortars

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 592
Author(s):  
Siyun Kim ◽  
Sung Jig Kim ◽  
Chunho Chang

The paper investigates the seismic performance of rectangular RC columns retrofitted by a newly developed 3D Textile Reinforced Mortar (TRM) panel. The 3D-TRM used in this study consists of two components: self-leveling mortar and 3D textiles. Firstly, the flexural capacity of the 3D-TRM panel was investigated through the four-point flexural test. Secondly, a total of five specimens were constructed and experimentally investigated through static cyclic loading tests with constant axial load. One specimen was a non-seismically designed column without any retrofit, while the others were strengthened with either the 3D-TRM panel or conventional Fiber Reinforced Polymer (FRP) sheets. Experimental results in terms of hysteretic behavior, ductility ratio, and energy dissipation are investigated and compared with the cases of specimens with conventional retrofitting methods and without any retrofit. The maximum lateral force, ductility, stiffness degradation, and energy dissipation of RC columns with 3D-TRM panels were significantly improved compared with the conventional RC column. Therefore, it is concluded that the proposed retrofitting method can improve the seismic performance of non-conforming RC columns.

2011 ◽  
Vol 368-373 ◽  
pp. 38-41 ◽  
Author(s):  
Cheng Xiang Xu ◽  
Zan Jun Wu ◽  
Lei Zeng

To understand mechanical characteristics and seismic behaviors of T-shaped concrete-filled steel tubular (CFST) joints, cyclic loading tests were carried out on four 1/2-scale exterior joints of top floor. The study includes joints’ mechanical character, failure mode, hysteretic behavior, ductility, energy dissipation and stiffness degradation under different height of beam and different axial compression ratios. The results indicate that frame joints satisfy the design principle of stronger joints and weaker components. The hysteretic loops are plump, ductility and energy dissipation capacity is better than that of ordinary reinforced concrete joints. Axial compression ratios can influence seismic behaviors of frame joints to some degree.


2012 ◽  
Vol 256-259 ◽  
pp. 2079-2084 ◽  
Author(s):  
Tie Cheng Wang ◽  
An Gao ◽  
Hai Long Zhao

The influence of the pile type and the stirrup on the seismic performance was evaluated based on the results of reversed cyclic loading tests on the four prestressed high strength concrete (PHC) piles. It is indicated that the AB-type pile has the better seismic performance than the A-type pile from the results. The bearing capacity does not increase obviously with decreasing of the stirrup spacing and increasing of the stirrup diameter. The degradation of stiffness does not decrease significantly with decreasing of the stirrup spacing and increasing of the stirrup diameter. The energy dissipation capacity is improved with increasing of the stirrup diameter and decreasing of the stirrup spacing.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qingguang He ◽  
Yanxia Bai ◽  
Weike Wu ◽  
Yongfeng Du

A novel assembled self-centering variable friction (SCVF) brace is proposed which is composed of an energy dissipation system, a self-centering system, and a set of force transmission devices. The hysteretic characteristics and energy dissipation of the SCVF brace with various parameters from low-cyclic loading tests are presented. A finite element model was constructed and tested under simulated examination for comparative analysis. The results indicate that the brace shows an atypical flag-type hysteresis curve. The SCVF brace showed its stable self-centering ability and dissipation energy capacity within the permitted axial deformation under different spring and friction plates. A larger deflection of the friction plate will make the variable friction of this SCVF brace more obvious. A higher friction coefficient will make the energy dissipation capacity of the SCVF brace stronger, but the actual friction coefficient will be lower than the design value after repeated cycles. The results of the fatigue tests showed that the energy dissipation system formed by the ceramic fiber friction blocks and the friction steel plates in the SCVF brace has a certain stability. The finite element simulation results are essentially consistent with the obtained test results, which is conducive to the use of finite element software for calculation and structural analysis in actual engineering design.


2012 ◽  
Vol 256-259 ◽  
pp. 2063-2066
Author(s):  
Hui Ma ◽  
Jian Yang Xue ◽  
Xi Cheng Zhang ◽  
Zong Ping Chen

In order to evaluate whether concrete with recycled coarse aggregate can be applied for steel reinforced concrete (SRC) under the earthquake, low cyclic loading tests of SRC with different recycled coarse aggregate (RCA) replacement percentage were carried out in this paper. Based on the tests of three SRRC column specimens, the failure modes, the hysteresis curves, the skeleton curves, the ductility, and the stiffness degradation of SRRC columns are investigated. The influence of variation in the RCA replacement percentage on the SRRC column is analyzed in detail. Test results show that the seismic performance of SRRC column is reduced to an allowable extent with the increasing magnitude of the RCA replacement percentage. The SRRC column still has a good seismic performance and the recycled coarse aggregate can be applied for steel reinforced concrete through the proper design.


2021 ◽  
Vol 301 ◽  
pp. 124105
Author(s):  
Joaquín G. Ruiz-Pinilla ◽  
Antoni Cladera ◽  
Francisco J. Pallarés ◽  
Pedro A. Calderón ◽  
José M. Adam

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Huimin Mao ◽  
Xueyuan Yan ◽  
Xiangliang Ning ◽  
Shen Shi

In this work, a displacement-amplified torsional damper (DATD) is proposed for improving the seismic capacity of the beam-column joints of a frame structure. The proposed DATD uses common steel, lead, and high-damping rubber. This damper exhibits good energy dissipation under small earthquakes. Under strong earthquakes and large displacements, the strengthening of the high-damping rubber can improve the overall stiffness of the damper and increase the energy dissipation. In order to investigate the performance of the proposed DATD, theoretical analyses, simulations, and cyclic loading tests were performed, and their results were compared, showing an overall good agreement.


Sign in / Sign up

Export Citation Format

Share Document