scholarly journals Evaluation of Microstructure and Transport Properties of Deteriorated Cementitious Materials from Their X-ray Computed Tomography (CT) Images

Materials ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 388 ◽  
Author(s):  
Michael Promentilla ◽  
Shermaine Cortez ◽  
Regina Papel ◽  
Bernadette Tablada ◽  
Takafumi Sugiyama
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Guangyu Lei ◽  
Jichang Han ◽  
Faning Dang

X-ray images can be used to nondestructively monitor the initiation, extension, and combination of cracks in concrete. In this study, real-time X-ray computed tomography (CT) scanning of concrete specimens under static and dynamic loadings was done. The CT images showed the growth, propagation, and penetration of the cracks and showed the ultimate failure of the concrete samples. Analysis of the CT images and CT numbers showed that the failure followed the structure’s areas of weakness under the static load, but for dynamic loading, the cracks formed very rapidly along straight lines through the aggregate.


2011 ◽  
Vol 41 (11) ◽  
pp. 2120-2140 ◽  
Author(s):  
Qiang Wei ◽  
Brigitte Leblon ◽  
Armand La Rocque

In several processes of the forest products industry, an in-depth knowledge of log and board internal features is required and their determination needs fast scanning systems. One of the possible technologies is X-ray computed tomography (CT) technology. Our paper reviews applications of this technology in wood density measurements, in wood moisture content monitoring, and in locating internal log features that include pith, sapwood, heartwood, knots, and other defects. Annual growth ring measurements are more problematic to be detected on CT images because of the low spatial resolution of the images used. For log feature identification, our review shows that the feed-forward back-propagation artificial neural network is the most efficient CT image processing method. There are also some studies attempting to reconstruct three-dimensional log or board images from two-dimensional CT images. Several industrial prototypes have been developed because medical CT scanners were shown to be inappropriate for the wood industry. Because of the high cost of X-ray CT scanner equipment, other types of inexpensive sensors should also be investigated, such as electric resistivity tomography and microwaves. It also appears that the best approach uses various different sensors, each of them having its own strengths and weaknesses.


2021 ◽  
Vol 173 ◽  
pp. 110948
Author(s):  
Yu Chen ◽  
Oğuzhan Çopuroğlu ◽  
Claudia Romero Rodriguez ◽  
Fernando F. de Mendonca Filho ◽  
Erik Schlangen

2020 ◽  
Vol 277 ◽  
pp. 116495
Author(s):  
Saptarshee Mitra ◽  
Mohamed EL Mansori ◽  
Antonio Rodríguez de Castro ◽  
Marius Costin

Sign in / Sign up

Export Citation Format

Share Document