scholarly journals The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

Materials ◽  
2016 ◽  
Vol 9 (9) ◽  
pp. 713 ◽  
Author(s):  
Zhaobin Zhang ◽  
Xiao Li
Author(s):  
Chong Hyun Ahn ◽  
Robert Dilmore ◽  
John Yilin Wang

The most effective method for stimulating shale gas reservoirs is horizontal drilling with successful multi-stage hydraulic fracture treatments. Recent fracture diagnostic technologies have shown that complex fracture networks are commonly created in the field. The interaction between preexisting natural fractures and the propagating hydraulic fracture is a critical factor affecting the complex fracture network. However, many existing numerical models simulate only planar hydraulic fractures without considering the pre-existing fractures in the formation. The shale formations already contain a large number of natural fractures, so an accurate fracture propagation model needs to be developed to optimize the fracturing process. In this paper, we first understood the interaction between hydraulic and natural fractures. We then developed a new, coupled numerical model that integrates dynamic fracture propagation, reservoir flow simulation, and the interactions between hydraulic fractures and pre-existing natural fractures. By using the developed model, we conducted parametric studies to quantify the effects of rock toughness, stress anisotropy, and natural fracture spacing on the geometry and conductivities of the hydraulic fracture network. Lastly, we introduced new parmeters Fracture Network Index (FNI) and Width Anistropy (Wani) which may describe the characteristics of the fracture network in shale gas reservoirs. This new knowledge helps one understand and optimize the stimulation of shale gas reservoirs.


Author(s):  
Bin Wang

We present a generic and open-source framework for the numerical modeling of the expected transport and storage mechanisms in unconventional gas reservoirs. These unconventional reservoirs typically contain natural fractures at multiple scales. Considering the importance of these fractures in shale gas production, we perform a rigorous study on the accuracy of different fracture models. The framework is validated against an industrial simulator and is used to perform a history-matching study on the Barnett shale. This work presents an open-source code that leverages cutting-edge numerical modeling capabilities like automatic differentiation, stochastic fracture modeling, multi-continuum modeling and other explicit and discrete fracture models. We modified the conventional mass balance equation to account for the physical mechanisms that are unique to organic-rich source rocks. Some of these include the use of an adsorption isotherm, a dynamic permeability-correction function, and an embedded discrete fracture model (EDFM) with fracture-well connectivity. We explore the accuracy of the EDFM for modeling hydraulically-fractured shale-gas wells, which could be connected to natural fractures of finite or infinite conductivity, and could deform during production. Simulation results indicates that although the EDFM provides a computationally efficient model for describing flow in natural and hydraulic fractures, it could be inaccurate under these three conditions: 1. when the fracture conductivity is very low. 2. when the fractures are not orthogonal to the underlying Cartesian grid blocks, and 3. when sharp pressure drops occur in large grid blocks with insufficient mesh refinement. Each of these results are very significant considering that most of the fluids in these ultra-low matrix permeability reservoirs get produced through the interconnected natural fractures, which are expected to have very low fracture conductivities. We also expect sharp pressure drops near the fractures in these shale gas reservoirs, and it is very unrealistic to expect the hydraulic fractures or complex fracture networks to be orthogonal to any structured grid. In conclusion, this paper presents an open-source numerical framework to facilitate the modeling of the expected physical mechanisms in shale-gas reservoirs. The code was validated against published results and a commercial simulator. We also performed a history-matching study on a naturally-fractured Barnett shale-gas well considering adsorption, gas slippage & diffusion and fracture closure as well as proppant embedment, using the framework presented. This work provides the first open-source code that can be used to facilitate the modeling and optimization of fractured shale-gas reservoirs. To provide the numerical flexibility to accurately model stochastic natural fractures that are connected to hydraulically-fractured wells, it is built atop other related open-source codes. We also present the first rigorous study on the accuracy of using EDFM to model both hydraulic fractures and natural fractures that may or may not be interconnected.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3965
Author(s):  
Cheng Chang ◽  
Chuxi Liu ◽  
Yongming Li ◽  
Xiaoping Li ◽  
Wei Yu ◽  
...  

In order to account for big uncertainties such as well interferences, hydraulic and natural fractures’ properties and matrix properties in shale gas reservoirs, it is paramount to develop a robust and efficient approach for well spacing optimization. In this study, a novel well spacing optimization workflow is proposed and applied to a real shale gas reservoir with two-phase flow, incorporating the systematic analysis of uncertainty reservoir and fracture parameters. One hundred combinations of these uncertainties, considering their interactions, were gathered from assisted history matching solutions, which were calibrated by the actual field production history from the well in the Sichuan Basin. These combinations were used as direct input to the well spacing optimization workflow, and five “wells per section” spacing scenarios were considered, with spacing ranging from 157 m (517 ft) to 472 m (1550 ft). An embedded discrete fracture model was used to efficiently model both hydraulic fractures and complex natural fractures non-intrusively, along with a commercial compositional reservoir simulator. Economic analysis after production simulation was then carried out, by collecting cumulative gas and water production after 20 years. The net present value (NPV) distributions of the different well spacing scenarios were calculated and presented as box-plots with a NPV ranging from 15 to 35 million dollars. It was found that the well spacing that maximizes the project NPV for this study is 236 m (775 ft), with the project NPV ranging from 15 to 35 million dollars and a 50th percentile (P50) value of 25.9 million dollars. In addition, spacings of 189 m (620 ft) and 315 m (1033 ft) can also produce substantial project profits, but are relatively less satisfactory than the 236 m (775 ft) case when comparing the P25, P50 and P75 values. The results obtained from this study provide key insights into the field pilot design of well spacing in shale gas reservoirs with complex natural fractures.


Sign in / Sign up

Export Citation Format

Share Document