scholarly journals A Review of Thermal Monitoring Techniques for Radial Permanent Magnet Machines

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Tianze Meng ◽  
Pinjia Zhang

Permanent magnet machines are widely applied in motor drive systems. Therefore, condition monitoring of permanent magnet machines has great significance to assist maintenance. High temperatures are accountable for lots of typical malfunctions and faults, such as demagnetization of the permanent magnet (PM) and inter-turn short circuit of stator windings. Therefore, temperature monitoring of the PM and stator windings is essential for reliable operation. In this paper, an overview introducing and evaluating existing thermal monitoring methods is presented. First, the mechanism of thermal-caused failures for the PM and stator windings is introduced. Then, the design procedure and principles of existing temperature monitoring methods are introduced and summarized. Next, the evaluations and recommendations of application feasibility are demonstrated. Finally, the potential future challenges and opportunities for temperature monitoring of the PM and stator windings are discussed.

2020 ◽  
Vol 10 (2) ◽  
pp. 691 ◽  
Author(s):  
Riham Ginzarly ◽  
Ghaleb Hoblos ◽  
Nazih Moubayed

Due to the accelerating pace of environmental concerns and fear of the depletion of conventional sources of energy, researchers are working on finding renewable energy sources of power for different axes of life. The transportation sector has intervened in this field and introduced hybrid electric vehicles. Many complaints have been mentioned concerning fault detection and identification in the vehicle to ensure its safety, reliability and availability. Diagnosis has not been able to overcome all these concerns, and research has shifted toward prognosis, where the manufacturing sector is urged to integrate fault prognosis in the vehicle’s electrical powertrain. In this article, prognosis of the vehicle’s electrical machine is treated using a hidden Markov model after modeling the electrical machine using the finite element method. Permanent magnet machines are preferable in this application. The modeling of the machine is a combination of the electromagnetic, thermal and vibration finite element models. The considered faults are demagnetization, turn-to-turn short circuit and eccentricity. A strategy for the calculation of the remaining useful life (RUL) is suggested when a turn-to-turn short circuit fault occurs.


Sign in / Sign up

Export Citation Format

Share Document