scholarly journals Some Results on the q-Calculus and Fractional q-Differential Equations

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Ying Sheng ◽  
Tie Zhang

In this paper, we first discuss some important properties of fractional q-calculus. Then, based on these properties and the q-Laplace transform, we translate a class of fractional q-differential equations into the equivalent q-differential equations with integer order. Thus, we propose a method for solving some linear fractional q-differential equations by means of solving the corresponding integer order equations. Several examples are provided to illustrate our solution method.

2016 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Naser Al-Qutaifi

<p>The idea of replacing the first derivative in time by a fractional derivative of order , where , leads to a fractional generalization of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order equation and the solution of its fractional extension by using the Laplace transform method.</p>


Author(s):  
J. Vanterler da C. Sousa ◽  
Rubens F. Camargo ◽  
E. Capelas de Oliveira ◽  
Gastáo S. F. Frederico

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 173-176
Author(s):  
J. D. Gray

In this short note we shall apply the theory of semi-groups of operators, (cf: Hille and Phillips, [2]), to the problem of representing solutions of certain differential equations with non-constant coefficients. When the coefficients are constant, this representation reduces to the usual Laplace transform solution of the relevant equation.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Sign in / Sign up

Export Citation Format

Share Document