On the Normalized Laplacian and the Number of Spanning Trees of Linear Heptagonal Networks
The normalized Laplacian plays an important role on studying the structure properties of non-regular networks. In fact, it focuses on the interplay between the structure properties and the eigenvalues of networks. Let H n be the linear heptagonal networks. It is interesting to deduce the degree-Kirchhoff index and the number of spanning trees of H n due to its complicated structures. In this article, we aimed to first determine the normalized Laplacian spectrum of H n by decomposition theorem and elementary operations which were not stated in previous results. We then derived the explicit formulas for degree-Kirchhoff index and the number of spanning trees with respect to H n .