scholarly journals A New Method to Optimize the Satisfaction Level of the Decision Maker in Fuzzy Geometric Programming Problems

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 464
Author(s):  
Armita Khorsandi ◽  
Bing-Yuan Cao ◽  
Hadi Nasseri

Geometric programming problems are well-known in mathematical modeling. They are broadly used in diverse practical fields that are contemplated through an appropriate methodology. In this paper, a multi-parametric vector α is proposed for approaching the highest decision maker satisfaction. Hitherto, the simple parameter α , which has a scalar role, has been considered in the problem. The parameter α is a vector whose range is within the region of the satisfaction area. Conventionally, it is assumed that the decision maker is sure about the parameters, but, in reality, it is mostly hesitant about them, so the parameters are presented in fuzzy numbers. In this method, the decision maker can attain different satisfaction levels in each constraint, and even full satisfaction can be reached in some constraints. The goal is to find the highest satisfaction degree to maintain an optimal solution. Moreover, the objective function is turned into a constraint, i.e., one more dimension is added to n-dimensional multi-parametric α . Thus, the fuzzy geometric programming problem under this multi-parametric vector α ∈ ( 0 , 1 ] n + 1 gives a maximum satisfaction level to the decision maker. A numerical example is presented to illustrate the proposed method and the superiority of this multi-parametric α over the simple one.

2013 ◽  
Vol 5 (3) ◽  
pp. 373-380
Author(s):  
Zeinab Kheiri ◽  
Faezeh Zahmatkesh ◽  
Bing-Yuan Cao

Author(s):  
Rasha Jalal

The aim of this paper is to suggest a solution procedure to fractional programming problem based on new ranking function (RF) with triangular fuzzy number (TFN) based on alpha cuts sets of fuzzy numbers. In the present procedure the linear fractional programming (LFP) problems is converted into linear programming problems. We concentrate on linear programming problem problems in which the coefficients of objective function are fuzzy numbers, the right- hand side are fuzzy numbers too, then solving these linear programming problems by using a new ranking function. The obtained linear programming problem can be solved using win QSB program (simplex method) which yields an optimal solution of the linear fractional programming problem. Illustrated examples and comparisons with previous approaches are included to evince the feasibility of the proposed approach.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. Phani Bushan Rao ◽  
N. Ravi Shankar

Ranking fuzzy numbers are an important aspect of decision making in a fuzzy environment. Since their inception in 1965, many authors have proposed different methods for ranking fuzzy numbers. However, there is no method which gives a satisfactory result to all situations. Most of the methods proposed so far are nondiscriminating and counterintuitive. This paper proposes a new method for ranking fuzzy numbers based on the Circumcenter of Centroids and uses an index of optimism to reflect the decision maker's optimistic attitude and also an index of modality that represents the neutrality of the decision maker. This method ranks various types of fuzzy numbers which include normal, generalized trapezoidal, and triangular fuzzy numbers along with crisp numbers with the particularity that crisp numbers are to be considered particular cases of fuzzy numbers.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 360
Author(s):  
T. Nagalakshmi ◽  
G. Uthra

This paper mainly focuses on a new approach to find an optimal solution of a fuzzy linear programming problem with the help of Fuzzy Dynamic Programming. Linear programming deals with the optimization of a function of variables called an objective function, subject to a set of linear inequalities called constraints. The objective function may be maximizing the profit or minimizing the cost or any other measure of effectiveness subject to constraints imposed by supply, demand, storage capacity, etc., Moreover, it is known that fuzziness prevails in all fields. Hence, a general linear programming problem with fuzzy parameters is considered where the variables are taken as Triangular Fuzzy Numbers. The solution is obtained by the method of FDP by framing fuzzy forward and fuzzy backward recursive equations. It is observed that the solutions obtained by both the equations are the same. This approach is illustrated with a numerical example. This feature of the proposed approach eliminates the imprecision and fuzziness in LPP models. The application of Fuzzy set theory in the field of dynamic Programming is called Fuzzy Dynamic Programming. 


Author(s):  
Nirbhay Mathur ◽  
Pankaj Kumar Srivastava ◽  
Ajit Paul

The main aim of this paper is to develop an approach based on trapezoidal fuzzy numbers to optimize transportation problem in fuzzy environment. The present algorithm has representation of availability, demand and transportation cost as trapezoidal fuzzy numbers. This algorithm is found quicker in terms of runtime as comparison to fuzzy VAM discussed in [Kaur A., Kumar A., A new method for solving fuzzy transportation problem using ranking function, Appl. Math. Model. 35:5652–5661, 2011; Ismail Mohideen S., Senthil Kumar P., A comparative study on transportation problem in fuzzy environment, Int. J. Math. Res. 2:151–158, 2010]. On the other hand this technique gives much better results than some classical methods like north-west corner and least cost method. Another benefit of this algorithm is that for certain transportation problems it directly gives optimal solution. It is one of the simplest methods to apply and perceive. Practical usefulness of the new method over other existing methods is demonstrated with two numerical examples.


2018 ◽  
Vol 3 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Michael Gr. Voskoglou

A Grey Linear Programming problem differs from an ordinary one to the fact that the coefficients of its objective function and / or the technological coefficients and constants of its constraints are grey instead of real numbers. In this work a new method is developed for solving such kind of problems by the whitenization of the grey numbers involved and the solution of the obtained in this way ordinary Linear Programming problem with a standard method. The values of the decision variables in the optimal solution may then be converted to grey numbers to facilitate a vague expression of it, but this must be strictly checked to avoid non creditable such expressions. Examples are also presented to illustrate the applicability of our method in real life applications.


2018 ◽  
Vol 10 (5) ◽  
pp. 60
Author(s):  
Muhammad Hanif ◽  
Farzana Sultana Rafi

The several standard and the existing proposed methods for optimality of transportation problems in linear programming problem are available. In this paper, we considered all standard and existing proposed methods and then we proposed a new method for optimal solution of transportation problems. The most attractive feature of this method is that it requires very simple arithmetical and logical calculation, that’s why it is very easy even for layman to understand and use. Some limitations and recommendations of future works are also mentioned of the proposed method. Several numerical examples have been illustrated, those gives the clear idea about the method. A programming code for this method has been written in Appendix of the paper.


Fuzzy Systems ◽  
2017 ◽  
pp. 367-392 ◽  
Author(s):  
P. Senthil Kumar

In conventional transportation problem (TP), supplies, demands and costs are always certain. In this paper, the author tried to categories the TP under the mixture of certain and uncertain environment and formulates the problem and utilizes the crisp numbers, triangular fuzzy numbers (TFNs) and trapezoidal fuzzy numbers (TrFNs) to solve the TP. The existing ranking procedure of Liou and Wang is used to transform the type-1 and type-3 fuzzy transportation problem (FTP) into a crisp one so that the conventional method may be applied to solve the TP. The solution procedure differs from TP to type-1 and type-3 FTP in allocation step only. Therefore, the new method called PSK method and new multiplication operation on TrFN is proposed to find the mixed optimal solution in terms of crisp numbers, TFNs and TrFNs. The main advantage of this method is computationally very simple, easy to understand and also the optimum objective value obtained by our method is physically meaningful. The effectiveness of the proposed method is illustrated by means of a numerical example.


2021 ◽  
Vol 101 (1) ◽  
pp. 25-36
Author(s):  
S.M. Davoodi ◽  
◽  
N.A. Abdul Rahman ◽  

In this paper we try to define a percentage form of LR fuzzy numbers which is a useful form of fuzzy numbers and its’ arithmetics. So, we show how the maximum variation range of optimal value of fuzzy objective function can be predicted by using this form of fuzzy numbers. Since fuzzy problems are generally solved through a complicated manner, the purpose of this study is releasing a kind of prediction for the final solution in the way that the manager can access to an outlook to optimal solution (Z∗) without solving the problem. Finally, optimal value of fuzzy objective function on fuzzy linear programming is predicted when maximum variation range of fuzzy variable have been predetermined.


Sign in / Sign up

Export Citation Format

Share Document