scholarly journals Geodesic Mappings of Vn(K)-Spaces and Concircular Vector Fields

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 692 ◽  
Author(s):  
Shandra ◽  
Mikeš

In the present paper, we study geodesic mappings of special pseudo-Riemannian manifolds called V n ( K ) -spaces. We prove that the set of solutions of the system of equations of geodesic mappings on V n ( K ) -spaces forms a special Jordan algebra and the set of solutions generated by concircular fields is an ideal of this algebra. We show that pseudo-Riemannian manifolds admitting a concircular field of the basic type form the class of manifolds closed with respect to the geodesic mappings.




Author(s):  
L. Vanhecke ◽  
T. J. Willmore

SynopsisThis is a contribution to the general problem of determining the extent to which the geometry of a riemannian manifold is determined by properties of its geodesic spheres. In particular we show that total umbilicity of geodesic spheres determines riemannian manifolds of constant sectional curvature; quasi-umbilicity of geodesic spheres determines Kähler and nearly-Kähler manifolds of constant holomorphic sectional curvature; and the condition that geodesic spheres have only two different principal curvatures, one having multiplicity 3, determines manifolds locally isometric to the quaternionic projective spaces. The use of Jacobi vector fields leads to a unified treatment of these different cases.



2008 ◽  
Vol 49 (3) ◽  
pp. 395-407 ◽  
Author(s):  
V. N. Berestovskii ◽  
Yu. G. Nikonorov


2014 ◽  
Vol 25 (11) ◽  
pp. 1450104 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh

A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is said to have concurrent potential field if its potential field v is a concurrent vector field. Ricci solitons arisen from concurrent vector fields on Riemannian manifolds were studied recently in [Ricci solitons and concurrent vector fields, preprint (2014), arXiv:1407.2790]. The most important concurrent vector field is the position vector field on Euclidean submanifolds. In this paper we completely classify Ricci solitons on Euclidean hypersurfaces arisen from the position vector field of the hypersurfaces.





1980 ◽  
Vol 105 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Ann Stehney ◽  
Richard Millman




Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2683-2689 ◽  
Author(s):  
Hana Chudá ◽  
Nadezda Guseva ◽  
Patrik Peska

In this paper we study special mappings between n-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced PQ?-projectivity of Riemannian metrics, with constant ? ? 0,1 + n. These mappings were studied later by Matveev and Rosemann and they found that for ? = 0 they are projective. These mappings could be generalized for case, when ? will be a function on manifold. We show that PQ?- projective equivalence with ? is a function corresponds to a special case of F-planar mapping, studied by Mikes and Sinyukov (1983) with F = Q. Moreover, the tensor P is derived from the tensor Q and non-zero function ?. We assume that studied mappings will be also F2-planar (Mikes 1994). This is the reason, why we suggest to rename PQ? mapping as F?2. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.



Sign in / Sign up

Export Citation Format

Share Document