scholarly journals Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 933 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Meijuan Shang

In this work, let X be Banach space with a uniformly convex and q-uniformly smooth structure, where 1 < q ≤ 2 . We introduce and consider a generalized Mann-like viscosity implicit rule for treating a general optimization system of variational inequalities, a variational inclusion and a common fixed point problem of a countable family of nonexpansive mappings in X. The generalized Mann-like viscosity implicit rule investigated in this work is based on the Korpelevich’s extragradient technique, the implicit viscosity iterative method and the Mann’s iteration method. We show that the iterative sequences governed by our generalized Mann-like viscosity implicit rule converges strongly to a solution of the general optimization system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Long He ◽  
Yun-Ling Cui ◽  
Lu-Chuan Ceng ◽  
Tu-Yan Zhao ◽  
Dan-Qiong Wang ◽  
...  

AbstractIn a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.



Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2939-2951
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, let X be a uniformly convex and q-uniformly smooth Banach space with 1 < q ? 2. We introduce and study modified implicit extragradient iterations for treating a common solution of a common fixed-point problem of a countable family of nonexpansive mappings, a general system of variational inequalities, and a variational inclusion in X.



Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.



Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 338 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this work, we concern ourselves with the problem of solving a general system of variational inequalities whose solutions also solve a common fixed-point problem of a family of countably many nonlinear operators via a hybrid viscosity implicit iteration method in 2 uniformly smooth and uniformly convex Banach spaces. An application to common fixed-point problems of asymptotically nonexpansive and pseudocontractive mappings and variational inequality problems for strict pseudocontractive mappings is also given in Banach spaces.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chung-Chien Hong ◽  
Young-Ye Huang

The two-operator split common fixed point problem (two-operator SCFP) with firmly nonexpansive mappings is investigated in this paper. This problem covers the problems of split feasibility, convex feasibility, and equilibrium and can especially be used to model significant image recovery problems such as the intensity-modulated radiation therapy, computed tomography, and the sensor network. An iterative scheme is presented to approximate the minimum norm solution of the two-operator SCFP problem. The performance of the presented algorithm is compared with that of the last algorithm for the two-operator SCFP and the advantage of the presented algorithm is shown through the numerical result.



Author(s):  
Zhanfei Zuo

It is our purpose in this paper to prove two convergents of viscosity approximation scheme to a common fixed point of a family of multivalued nonexpansive mappings in Banach spaces. Moreover, it is the unique solution in to a certain variational inequality, where stands for the common fixed-point set of the family of multivalued nonexpansive mapping .



Sign in / Sign up

Export Citation Format

Share Document