scholarly journals Existence, Nonexistence and Multiplicity of Positive Solutions for Singular Boundary Value Problems Involving φ-Laplacian

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 953 ◽  
Author(s):  
Chan-Gyun Kim

In this paper, we establish the results on the existence, nonexistence and multiplicity of positive solutions to singular boundary value problems involving φ -Laplacian. Our approach is based on the fixed point index theory. The interesting point is that a result for the existence of three positive solutions is given.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Shoucheng Yu ◽  
Zhilin Yang

We study the existence and multiplicity of positive solutions for the system of fourth-order boundary value problems x(4)=ft,x,x′,-x′′,-x′′′,y,y′,-y′′,-y′′′,  y(4)=gt,x,x′,-x′′,-x′′′,y,y′,-y′′,-y′′′,  x(0)=x′(1)=x′′(0)=x′′′(1)=0, and y(0)=y′(1)=y′′(0)=y′′′(1)=0, where f,g∈C([0,1]×R+8,R+)  (R+:=[0,∞)). We use fixed point index theory to establish our main results based on a priori estimates achieved by utilizing some integral identities and inequalities and R+2-monotone matrices.



2010 ◽  
Vol 140 (6) ◽  
pp. 1187-1196
Author(s):  
Chan-Gyun Kim

We study the existence, multiplicity and non-existence of positive solutions for the singular two-point boundary-value problemswhere $\varphi_{p}(s)=|s|^{p-2}s$, $p>1$, λ is a non-negative real parameter and f ∈ C((0, 1) × [0,∞), (0,∞)). Here, f(t, u) may be singular at t = 0 and/or 1. To obtain the main results we use the global continuation theorem and fixed-point index theory.



2004 ◽  
Vol 45 (4) ◽  
pp. 557-571
Author(s):  
Yan Sun ◽  
Lishan Liu ◽  
Yeol Je Cho

AbstractBy using fixed point index theory, we present the existence of positive solutions for a Sturm-Liouville singular boundary value problem with at least one positive solution. Our results significantly extend and improve many known results even for non-singular cases.



Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 654 ◽  
Author(s):  
Jeongmi Jeong ◽  
Chan-Gyun Kim

This paper is concerned with the existence of positive solutions to singular Dirichlet boundary value problems involving φ -Laplacian. For non-negative nonlinearity f = f ( t , s ) satisfying f ( t , 0 ) ¬ ≡ 0 , the existence of an unbounded solution component is shown. By investigating the shape of the component depending on the behavior of f at ∞ , the existence, nonexistence and multiplicity of positive solutions are studied.



2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Yulin Zhao

By means of the fixed point index theory of strict-set contraction operator, we study the existence of positive solutions for the multipoint singular boundary value problem(-1)n-kun(t)=f(t,ut),0<t<1,n≥2,1≤k≤n-1,u(0)=∑i=1m-2‍aiu(ξi),u(i)(0)=u(j)(1)=θ,1≤i≤k−1,0≤j≤n−k−1in a real Banach spaceE, whereθis the zero element ofE,0<ξ1<ξ2<⋯<ξm-2<1,ai∈[0,+∞),i=1,2,…,m-2.As an application, we give two examples to demonstrate our results.





2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Liyun Jin ◽  
Hua Luo

Abstract In this paper, we mainly consider a kind of discrete second-order boundary value problem with fully nonlinear term. By using the fixed-point index theory, we obtain some existence results of positive solutions of this kind of problems. Instead of the upper and lower limits condition on f, we may only impose some weaker conditions on f.



Sign in / Sign up

Export Citation Format

Share Document