scholarly journals Positive Solutions for (k,n−k) Conjugate Multipoint Boundary Value Problems in Banach Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Yulin Zhao

By means of the fixed point index theory of strict-set contraction operator, we study the existence of positive solutions for the multipoint singular boundary value problem(-1)n-kun(t)=f(t,ut),0<t<1,n≥2,1≤k≤n-1,u(0)=∑i=1m-2‍aiu(ξi),u(i)(0)=u(j)(1)=θ,1≤i≤k−1,0≤j≤n−k−1in a real Banach spaceE, whereθis the zero element ofE,0<ξ1<ξ2<⋯<ξm-2<1,ai∈[0,+∞),i=1,2,…,m-2.As an application, we give two examples to demonstrate our results.


2004 ◽  
Vol 45 (4) ◽  
pp. 557-571
Author(s):  
Yan Sun ◽  
Lishan Liu ◽  
Yeol Je Cho

AbstractBy using fixed point index theory, we present the existence of positive solutions for a Sturm-Liouville singular boundary value problem with at least one positive solution. Our results significantly extend and improve many known results even for non-singular cases.



Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 953 ◽  
Author(s):  
Chan-Gyun Kim

In this paper, we establish the results on the existence, nonexistence and multiplicity of positive solutions to singular boundary value problems involving φ -Laplacian. Our approach is based on the fixed point index theory. The interesting point is that a result for the existence of three positive solutions is given.



2010 ◽  
Vol 140 (6) ◽  
pp. 1187-1196
Author(s):  
Chan-Gyun Kim

We study the existence, multiplicity and non-existence of positive solutions for the singular two-point boundary-value problemswhere $\varphi_{p}(s)=|s|^{p-2}s$, $p>1$, λ is a non-negative real parameter and f ∈ C((0, 1) × [0,∞), (0,∞)). Here, f(t, u) may be singular at t = 0 and/or 1. To obtain the main results we use the global continuation theorem and fixed-point index theory.



2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Yongxiang Li

The existence results of positive solutions are obtained for the fourth-order periodic boundary value problemu(4)−βu′′+αu=f(t,u,u′′),0≤t≤1,u(i)(0)=u(i)(1),  i=0,1,2,3, wheref:[0,1]×R+×R→R+is continuous,α,β∈R,and satisfy0<α<((β/2)+2π2)2,β>−2π2,(α/π4)+(β/π2)+1>0. The discussion is based on the fixed point index theory in cones.



2020 ◽  
Vol 24 (1) ◽  
pp. 109-129
Author(s):  
Abdulkadir Dogan ◽  
John R. Graef

In this paper, the authors examine the existence of positive solutions to a third-order boundary value problem having a sign changing nonlinearity. The proof makes use of fixed point index theory. An example is included to illustrate the applicability of the results.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Liyun Jin ◽  
Hua Luo

Abstract In this paper, we mainly consider a kind of discrete second-order boundary value problem with fully nonlinear term. By using the fixed-point index theory, we obtain some existence results of positive solutions of this kind of problems. Instead of the upper and lower limits condition on f, we may only impose some weaker conditions on f.



2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yan Sun

Under some conditions concerning the first eigenvalues corresponding to the relevant linear operator, we obtain sharp optimal criteria for the existence of positive solutions forp-Laplacian problems with integral boundary conditions. The main methods in the paper are constructing an available integral operator and combining fixed point index theory. The interesting point of the results is that the nonlinear term contains all lower-order derivatives explicitly. Finally, we give some examples to demonstrate the main results.



2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Jingjing Cai ◽  
Guilong Liu

Using a specially constructed cone and the fixed point index theory, this work shows existence and nonexistence results of positive solutions for fourth-order boundary value problem with two different parameters in Banach spaces.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Li Wu ◽  
Chuanzhi Bai

In this paper, we investigate the existence of positive solutions of a class of fractional three-point boundary value problem with an advanced argument by using fixed-point index theory. Our results improve and extend some known results in the literature. Two examples are given to demonstrate the effectiveness of our results.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Lianlong Sun ◽  
Zhilin Yang

We investigate the existence of positive solutions for the system of fourth-order p-Laplacian boundary value problems (|u′′|p-1u′′)′′=f1(t,u,v),  (|v′′|q-1v′′)′′=f2(t,u,v),  u(2i)(0)=u(2i)(1)=0,  i=0,1,  v(2i)(0)=v(2i)(1)=0,  i=0,1, where p,q>0 and f1,f2∈C([0,1]×ℝ+2,ℝ+)  (ℝ+:=[0,∞)). Based on a priori estimates achieved by utilizing Jensen’s integral inequalities and nonnegative matrices, we use fixed point index theory to establish our main results.



Sign in / Sign up

Export Citation Format

Share Document