scholarly journals Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1037
Author(s):  
Bunyawee Chaloemyotphong ◽  
Atid Kangtunyakarn

The purpose of this paper is to introduce the split combination of variational inclusion problem which combines the concept of the modified variational inclusion problem introduced by Khuangsatung and Kangtunyakarn and the split variational inclusion problem introduced by Moudafi. Using a modified Halpern iterative method, we prove the strong convergence theorem for finding a common solution for the hierarchical fixed point problem and the split combination of variational inclusion problem. The result presented in this paper demonstrates the corresponding result for the split zero point problem and the split combination of variation inequality problem. Moreover, we discuss a numerical example for supporting our result and the numerical example shows that our result is not true if some conditions fail.

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 255
Author(s):  
Yan Tang ◽  
Yeol Cho

In this paper, the split variational inclusion problem (SVIP) and the system of equilibrium problems (EP) are considered in Hilbert spaces. Inspired by the works of Byrne et al., López et al., Moudafi and Thukur, Sobumt and Plubtieng, Sitthithakerngkiet et al. and Eslamian and Fakhri, a new self-adaptive step size algorithm is proposed to find a common element of the solution set of the problems SVIP and EP. Convergence theorems are established under suitable conditions for the algorithm and application to the common solution of the fixed point problem, and the split convex optimization problem is considered. Finally, the performances and computational experiments are presented and a comparison with the related algorithms is provided to illustrate the efficiency and applicability of our new algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 749 ◽  
Author(s):  
Mujahid Abbas ◽  
Yusuf Ibrahim ◽  
Abdul Rahim Khan ◽  
Manuel De la Sen

The aim of this paper is to introduce a modified viscosity iterative method to approximate a solution of the split variational inclusion problem and fixed point problem for a uniformly continuous multivalued total asymptotically strictly pseudocontractive mapping in C A T ( 0 ) spaces. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. Furthermore, we solve a split Hammerstein integral inclusion problem and fixed point problem as an application to validate our result. It seems that our main result in the split variational inclusion problem is new in the setting of C A T ( 0 ) spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a regularization method for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters, which allow us to obtain a short proof of another strong convergence theorem for this problem. We also apply our main result to the fixed point problem of the nonexpansive variational inequality problem, the common fixed point problem of nonexpansive strict pseudocontractions, the convex minimization problem, and the split feasibility problem. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.


Sign in / Sign up

Export Citation Format

Share Document