qcd factorization
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 27)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Lili Chen ◽  
Mengfei Zhao ◽  
Yunyun Zhang ◽  
Qin Chang
Keyword(s):  

Author(s):  
C. A. Aidala ◽  
T. C. Rogers

It is unusual to find quantum chromodynamics (QCD) factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entanglement. We will elaborate with several examples and explain them in terms familiar from basic quantum mechanics and quantum information science. This article is part of the theme issue ‘Quantum technologies in particle physics’.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Tianbo Liu ◽  
W. Melnitchouk ◽  
Jian-Wei Qiu ◽  
N. Sato

Abstract We present the details of a new factorized approach to semi-inclusive deep-inelastic scattering which treats QED and QCD radiation on equal footing, and provides a systematically improvable approximation to the extraction of transverse momentum dependent parton distributions. We demonstrate how the QED contributions can be well approximated by collinear factorization, and illustrate the application of the factorized approach to QED radiation in inclusive scattering. For semi-inclusive processes, we show how radiation effects prevent a well-defined “photon-nucleon” frame, forcing one to use a two-step process to account for the radiation. We illustrate the utility of the new method by explicit application to the spin-dependent Sivers and Collins asymmetries.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Vladimir M. Braun ◽  
Yao Ji ◽  
Alexey Vladimirov

Abstract We study chiral-odd quark-antiquark correlation functions suitable for lattice calculations of twist-three nucleon parton distribution functions hL(x) and e(x), and also the twist-two transversity distribution δq(x). The corresponding factorized expressions are derived in terms of the twist-two and twist-three collinear distributions to one-loop accuracy. The results are presented both in position space, as the factorization theorem for Ioffe-time distributions, and in momentum space, for quasi- and pseudo-distributions. We demonstrate that the twist-two part of the hL quasi(pseudo)-distribution can be separated from the twist-three part by virtue of an exact Jaffe-Ji-like relation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zhan Sun

Abstract In this paper, we present a detailed next-to-leading-order (NLO) study of J/ψ angular distributions in e+e−→ J/ψ + ηc, χcJ (J = 0, 1, 2) within the nonrelativistic QCD factorization (NRQCD). The numerical NLO expressions for total and differential cross sections, i.e., $$ \frac{d\sigma}{d\cos \theta } $$ dσ d cos θ = A + B cos2θ, are both derived. With the inclusion of the newly-calculated QCD corrections to A and B, the αθ (= B/A) parameters in J/ψ + χc0 and J/ψ + χc1 are moderately enhanced, while the magnitude of αθJ/ψ+χc2 is significantly reduced; regarding the production of J/ψ + ηc, the αθ value remains unchanged. By comparing with experiment, we find the predicted αθJ/ψ+ηc is in good agreement with the Belle measurement; however, αθJ/ψ+χc0 is still totally incompatible with the experimental result, and this discrepancy seems to hardly be cured by proper choices of the charm-quark mass, the renormalization scale, and the NRQCD matrix elements.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Wojciech Bizoń ◽  
Kirill Melnikov ◽  
Jérémie Quarroz

Abstract Higgs boson production in association with a charm-quark jet proceeds through two different mechanisms — one that involves the charm Yukawa coupling and the other that involves direct Higgs coupling to gluons. The interference of the two contributions requires a helicity flip and, therefore, cannot be computed with massless charm quarks. In this paper, we consider QCD corrections to the interference contribution starting from charm-gluon collisions with massive charm quarks and taking the massless limit, mc→ 0. The behavior of QCD cross sections in that limit differs from expectations based on the canonical QCD factorization. This implies that QCD corrections to the interference term necessarily involve logarithms of the ratio MH/mc whose resummation is currently unknown. Although the explicit next-to-leading order QCD computation does confirm the presence of up to two powers of ln(MH/mc) in the interference contribution, their overall impact on the magnitude of QCD corrections to the interference turns out to be moderate due to a cancellation between double and single logarithmic terms.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Vladimir M. Braun ◽  
Yao Ji ◽  
Alexey Vladimirov

Abstract The transverse component of the axial-vector correlation function of quark fields is a natural starting object for lattice calculations of twist-3 nucleon parton distribution functions. In this work we derive the corresponding factorization expression in terms of twist-2 and twist-3 collinear distributions to one-loop accuracy. The results are presented both in position space, as the factorization theorem for Ioffe-time distributions, and in momentum space, for the axial-vector quasi- and pseudodistributions.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Nico Adolph ◽  
Joachim Brod ◽  
Gudrun Hiller

AbstractWe study radiative charm decays $$D \rightarrow P_1 P_2 \gamma $$ D → P 1 P 2 γ , $$P_{1,2}=\pi ,K$$ P 1 , 2 = π , K in QCD factorization at leading order and within heavy hadron chiral perturbation theory. Branching ratios including resonance contributions are around $$\sim 10^{-3}$$ ∼ 10 - 3 for the Cabibbo-favored modes into $$K \pi \gamma $$ K π γ and $$\sim 10^{-5}$$ ∼ 10 - 5 for the singly Cabibbo-suppressed modes into $$\pi ^+ \pi ^- \gamma , K^+ K^- \gamma $$ π + π - γ , K + K - γ , and thus in reach of the flavor factories BES III and Belle II. Dalitz plots and forward–backward asymmetries reveal significant differences between the two QCD frameworks; such observables are therefore ideally suited for a data-driven identification of relevant decay mechanisms in the standard-model dominated $$D \rightarrow K \pi \gamma $$ D → K π γ decays. This increases the potential to probe new physics with the $$D \rightarrow \pi ^+ \pi ^- \gamma $$ D → π + π - γ and $$D \rightarrow K^+ K^- \gamma $$ D → K + K - γ decays, which are sensitive to enhanced dipole operators. CP asymmetries are useful to test the SM and look for new physics in neutral $$|\Delta C|=1$$ | Δ C | = 1 transitions. Cuts in the Dalitz plot enhance the sensitivity to new physics due to the presence of both s- and t, u-channel intermediate resonances.


2021 ◽  
Vol 1005 ◽  
pp. 121853
Author(s):  
Jian-Wei Qiu ◽  
Felix Ringer ◽  
Nobuo Sato ◽  
Pia Zurita

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Martin Beneke ◽  
Philipp Böer ◽  
Jan-Niklas Toelstede ◽  
K. Keri Vos

Abstract We show that the QCD factorization approach for B-meson decays to charmless hadronic two-body final states can be extended to include electromagnetic corrections. The presence of electrically charged final-state particles complicates the framework. Nevertheless, the factorization formula takes the same form as in QCD alone, with appropriate generalizations of the definitions of light-cone distribution amplitudes and form factors to include QED effects. More precisely, we factorize QED effects above the strong interaction scale ΛQCD for the non-radiative matrix elements $$ \left\langle {M}_1{M}_2\left|{Q}_i\right|\overline{B}\right\rangle $$ M 1 M 2 Q i B ¯ of the current-current operators from the effective weak interactions. The rates of the branching fractions for the infrared-finite observables $$ \overline{B}\to {M}_1{M}_2\left(\gamma \right) $$ B ¯ → M 1 M 2 γ with photons of maximal energy ∆E ≪ ΛQCD is then obtained by multiplying with the soft-photon exponentiation factors. We provide first estimates for the various electromagnetic corrections, and in particular quantify their impact on the πK ratios and sum rules that are often used as diagnostics of New Physics.


Sign in / Sign up

Export Citation Format

Share Document