scholarly journals Some Second-Order σ Schemes Combined with an H1-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 187
Author(s):  
Yaxin Hou ◽  
Cao Wen ◽  
Hong Li ◽  
Yang Liu ◽  
Zhichao Fang ◽  
...  

In this article, some high-order time discrete schemes with an H 1 -Galerkin mixed finite element (MFE) method are studied to numerically solve a nonlinear distributed-order sub-diffusion model. Among the considered techniques, the interpolation approximation combined with second-order σ schemes in time is used to approximate the distributed order derivative. The stability and convergence of the scheme are discussed. Some numerical examples are provided to indicate the feasibility and efficiency of our schemes.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
X. Wang ◽  
F. Liu ◽  
X. Chen

We derive and analyze second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations (RSDO-ADE) in one-dimensional (1D) and two-dimensional (2D) cases, respectively. Firstly, we discretize the Riesz space distributed-order advection-dispersion equations into multiterm Riesz space fractional advection-dispersion equations (MT-RSDO-ADE) by using the midpoint quadrature rule. Secondly, we propose a second-order accurate implicit numerical method for the MT-RSDO-ADE. Thirdly, stability and convergence are discussed. We investigate the numerical solution and analysis of the RSDO-ADE in 1D case. Then we discuss the RSDO-ADE in 2D case. For 2D case, we propose a new second-order accurate implicit alternating direction method, and the stability and convergence of this method are proved. Finally, numerical results are presented to support our theoretical analysis.


2004 ◽  
Vol 20 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Chiang Shih ◽  
Yeon-Kang Wang ◽  
Edward C. Ting

AbstractIn the third article of the series, a convected material frame is used to develop an incremental analysis procedure to calculate motions with large deformation and large displacement. Five numerical examples are given. The first three illustrate some numerical problems in explicit finite element that are resolved in the present approach. The other two demonstrate the stability and convergence of the method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
O. Tasbozan ◽  
A. Esen ◽  
N. M. Yagmurlu ◽  
Y. Ucar

A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.


Sign in / Sign up

Export Citation Format

Share Document