scholarly journals An Improved Structural Reliability Analysis Method Based on Local Approximation and Parallelization

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 209
Author(s):  
Bolin Liu ◽  
Liyang Xie

The Kriging-based reliability method with a sequential design of experiments (DoE) has been developed in recent years for implicit limit state functions. Such methods include the efficient global reliability analysis, the active learning reliability method combining Kriging and MCS Simulations. In this research, a novel local approximation method based on the most probable failure point (MPFP) is proposed to improve such methods. In this method, the MPFP calculated in the last iteration is the center of the next sampling region. The size of the local region depends on the reliability index obtained by the First Order Reliability Method (FORM) and the deviation distance of the standard deviation. The proposed algorithm, which approximates the limit state function accurately near MPFP rather than in the whole design space, can avoid selecting samples in regions that have negligible effects on the reliability analysis results. In addition, a multi-point enrichment technique is also introduced to select multiple sample points in each iteration. After the high-quality approximation of limit state function is obtained, the failure probability is calculated by the Monte Carlo method. Four numerical examples are used to validate the accuracy and efficiency of the proposed method. Results show that the proposed method is very effective for an accurate evaluation of the failure probability.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Zhang ◽  
Jiwei Qiu ◽  
Pidong Wang

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Hu ◽  
Guo-shao Su ◽  
Jianqing Jiang ◽  
Yilong Xiao

A new response surface method (RSM) for slope reliability analysis was proposed based on Gaussian process (GP) machine learning technology. The method involves the approximation of limit state function by the trained GP model and estimation of failure probability using the first-order reliability method (FORM). A small amount of training samples were firstly built by the limited equilibrium method for training the GP model. Then, the implicit limit state function of slope was approximated by the trained GP model. Thus, the implicit limit state function and its derivatives for slope stability analysis were approximated by the GP model with the explicit formulation. Furthermore, an iterative algorithm was presented to improve the precision of approximation of the limit state function at the region near the design point which contributes significantly to the failure probability. Results of four case studies including one nonslope and three slope problems indicate that the proposed method is more efficient to achieve reasonable accuracy for slope reliability analysis than the traditional RSM.


2013 ◽  
Vol 712-715 ◽  
pp. 1506-1509 ◽  
Author(s):  
Guang Bo Li ◽  
Guang Wei Meng ◽  
Feng Li ◽  
Li Ming Zhou

The response surface method is adopted to analyze the structural reliability. This paper presents a new response surface method with the uniform design method to predict the failure probability of structures. It is the response surface method based on Fourier orthogonal basis function (RSM-Fourier). To reduce computational costs in structural reliability analysis, approximate Fourier response surface functions for reliability assessment have been suggested. The method involves the selection of training datasets for establishing a model by the uniform design points, the approximation of the limit state function by the trained model and the estimation of the failure probability using first-order reliability method (FORM). The proposed method is applied to examples, compared with other methods to demonstrate its effectiveness.


2020 ◽  
Vol 11 (1) ◽  
pp. 346
Author(s):  
Pidong Wang ◽  
Lechang Yang ◽  
Ning Zhao ◽  
Lefei Li ◽  
Dan Wang

(1) Background: in practical applications, probabilistic and non-probabilistic information often simultaneously exit. For a complex system with a nonlinear limit-state function, the analysis and evaluation of the reliability are imperative yet challenging tasks. (2) Methods: an improved second-order method is proposed for reliability analysis in the presence of both random and interval variables, where a novel polar transformation is employed. This method enables a unified reliability analysis taking both random variables and bounded intervals into account, simplifying the calculation by transforming a high-dimension limit-state function into a bivariate state function. The obtained nonlinear probability density functions of two variables in the function inherit the statistic characteristics of interval and random variables. The proposed method does not require any strong assumptions and so it can be used in various practical engineering applications. (3) Results: the proposed method is validated via two numerical examples. A comparative study towards a contemporary algorithm in state-of-the-art literature is carried out to demonstrate the benefits of our method. (4) Conclusions: the proposed method outperforms existing methods both in efficiency and accuracy, especially for cases with strong nonlinearity.


2012 ◽  
Vol 446-449 ◽  
pp. 2321-2325
Author(s):  
Zhi Yong Zhang ◽  
Wen Bo Huang ◽  
Yue Fa Zhou ◽  
Tian Shu Song

The seismic reliability analysis of complex structure is carried out based on the response surface method and finite element method. Firstly, the appropriate design points are selected based on the mean values and standard deviations of the basic random variables. Secondly, the finite element method is employed to obtain the values of the limit state function of the complex structure. Thirdly, with selected design points and the obtained values of the limit state function of the complex structure, a polynomial function is constructed to approximate the original implicit limit state function. Then, with the established explicit polynomial limit state function and available methods of structural reliability analysis, the seismic reliability of the complex structure is estimated. Numerical analyses show that the established method is simple to use for the evaluation of the reliability analysis of complex structure.


Author(s):  
Zhen Hu ◽  
Xiaoping Du

Maintaining high accuracy and efficiency is a challenging issue in time-dependent reliability analysis. In this work, an accurate and efficient method is proposed for limit-state functions with the following features: The limit-state function is implicit with respect to time, and its input contains stochastic processes; the stochastic processes include only general strength and stress variables, or the limit-state function is monotonic to these stochastic processes. The new method employs random sampling approaches to estimate the distributions of the extreme values of the stochastic processes. The extreme values are then used to replace the corresponding stochastic processes, and consequently the time-dependent reliability analysis is converted into its time-invariant counterpart. The commonly used time-invariant reliability method, the First Order Reliability Method, is then applied for the time-variant reliability analysis. The results show that the proposed method significantly improves the accuracy and efficiency of time-dependent reliability analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Hongbo Zhao

Uncertainty is an important prosperity to rock tunnel. Reliability analysis is widely used to deal with the uncertainty. But it is difficult to be adopted in rock tunnel using the traditional reliability method because the limit state function is an implicit function. High dimension model representation (HDMR) can approximate the high dimensional, nonlinear, and implicit function using the low dimensional function. In this study, the HDMR method was adapted to approximate the limit state function through combining with response surface method (RSM). A new reliability analysis approach of HDMR-based response surface method, combined with the first-order reliability method (FORM), is developed to calculate the reliability index of tunnel, and implementation of the method is explained briefly. A circular tunnel with analytical solution and horseshoe tunnel with numerical solution are used to demonstrate the proposed method. The obtained reliability index is in excellent agreement with Low and Tang’s (2007) method and traditional RSM. It shows that HDMR-based response surface can approximate well the limit state function, and the proposed method is an efficient and effective approach for reliability analysis in tunnel engineering. It is very useful for reliability analysis of practical large-scale rock engineering.


Author(s):  
Zhifu Zhu ◽  
Zhen Hu ◽  
Xiaoping Du

The response of a component in a multidisciplinary system is affected by not only the discipline to which it belongs, but also by other disciplines of the system. If any components are subject to time-dependent uncertainties, responses of all the components and the system are also time dependent. Thus, time-dependent multidisciplinary reliability analysis is required. To extend the current time-dependent reliability analysis for a single component, this work develops a time-dependent multidisciplinary reliability method for components in a multidisciplinary system under stationary stochastic processes. The method modifies the First and Second Order Reliability Methods (FORM and SORM) so that the Multidisciplinary Analysis (MDA) is incorporated while approximating the limit-state function of the component under consideration. Then Monte Carlo simulation is used to calculate the reliability without calling the original limit-state function. Two examples are used to demonstrate and evaluate the proposed method.


Author(s):  
M. R. Khalessi ◽  
Y.-T. Wu ◽  
T. Y. Torng

Abstract This paper describes a new structural reliability analysis iteration procedure based on the concept of most probable point locus (MPPL). Using a new quadratic search algorithm, the proposed procedure examines the global behavior of the limit-state function, g, along the MPPL in the standard normal space in search of the most probable point (MPP) on the g = o surface, and identifies unusual conditions such as multiple MPPs. During the iteration procedure, the generated information is updated after each sensitivity analysis. This action helps the analyst to minimize the number of computer runs and determine the next step. By adopting two efficient convergence criteria, the proposed procedure is demonstrated to be significantly more efficient than the commonly used reliability analysis procedures, and is suitable to be integrated with existing general-purpose finite element computer programs for nondeterministic structural analysis.


2013 ◽  
Vol 477-478 ◽  
pp. 146-149
Author(s):  
Wei Dong Chen ◽  
Ping Jia ◽  
Xian De Wu ◽  
Yan Chun Yu ◽  
Feng Chao Zhang ◽  
...  

The limit state function (LSF) is implicit to many structure reliability analysis problems, which may make some classical reliability method complicated to be applied. One of the surrogate methods-support vector classification (SVC) was applied in the structural reliability analysis herein which has not been applied to structure reliability analysis until recent years. Then the advanced first order second moment method (AFOSM) can be applied. The expressions of structure system reliability sensitivity to basic variable were deduced. The flow of how to call the SVC program was presented. An example was shown to compare the SVC based method with some other classical reliability analysis methods. The results are accurately accepted and the advantages of SVC are analyzed.


Sign in / Sign up

Export Citation Format

Share Document