scholarly journals The Derived Subgroups of Sylow 2-Subgroups of the Alternating Group, Commutator Width of Wreath Product of Groups

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 472 ◽  
Author(s):  
Ruslan V. Skuratovskii

The structure of the commutator subgroup of Sylow 2-subgroups of an alternating group A 2 k is determined. This work continues the previous investigations of me, where minimal generating sets for Sylow 2-subgroups of alternating groups were constructed. Here we study the commutator subgroup of these groups. The minimal generating set of the commutator subgroup of A 2 k is constructed. It is shown that ( S y l 2 A 2 k ) 2 = S y l 2 ′ A 2 k , k > 2 . It serves to solve quadratic equations in this group, as were solved by Lysenok I. in the Grigorchuk group. It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups C p i , p i ∈ N equals to 1. The commutator width of direct limit of wreath product of cyclic groups is found. Upper bounds for the commutator width ( c w ( G ) ) of a wreath product of groups are presented in this paper. A presentation in form of wreath recursion of Sylow 2-subgroups S y l 2 ( A 2 k ) of A 2 k is introduced. As a result, a short proof that the commutator width is equal to 1 for Sylow 2-subgroups of alternating group A 2 k , where k > 2 , the permutation group S 2 k , as well as Sylow p-subgroups of S y l 2 A p k as well as S y l 2 S p k ) are equal to 1 was obtained. A commutator width of permutational wreath product B ≀ C n is investigated. An upper bound of the commutator width of permutational wreath product B ≀ C n for an arbitrary group B is found. The size of a minimal generating set for the commutator subgroup of Sylow 2-subgroup of the alternating group is found. The proofs were assisted by the computer algebra system GAP.

1973 ◽  
Vol 9 (1) ◽  
pp. 127-136
Author(s):  
Yeo Kok Chye

Let d(G) denote the minimum of the cardinalities of the generating sets of the group G. Call a generating set of cardinality d(G) a minimal generating set for G. If A is a finitely generated nilpotent group, B a non-trivial finitely generated abelian group and A wr B is their (restricted, standard) wreath product, then it is proved (by explicitly constructing a minimal generating set for A wr B ) that d(AwrB) = max{l+d(A), d(A×B)} where A × B is their direct product.


10.37236/73 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Steven Klee

We establish an upper bound on the cardinality of a minimal generating set for the fundamental group of a large family of connected, balanced simplicial complexes and, more generally, simplicial posets.


2021 ◽  
Vol 66 (6) ◽  
pp. 913-919
Author(s):  
A. M. Banaru ◽  
V. R. Shiroky ◽  
D. A. Banaru

2012 ◽  
Vol 55 (2) ◽  
pp. 390-399 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.


1972 ◽  
Vol 24 (5) ◽  
pp. 851-858 ◽  
Author(s):  
I. M. Isaacs

Let G be a finite p-group, having a faithful character χ of degree f. The object of this paper is to bound the number, d(G), of generators in a minimal generating set for G in terms of χ and in particular in terms of f. This problem was raised by D. M. Goldschmidt, and solved by him in the case that G has nilpotence class 2.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050015 ◽  
Author(s):  
Michał Jabłonowski ◽  
Łukasz Trojanowski

In this paper, we present a systematic method to generate prime knot and prime link minimal triple-point projections, and then classify all classical prime knots and prime links with triple-crossing number at most four. We also extend the table of known knots and links with triple-crossing number equal to five. By introducing a new type of diagrammatic move, we reduce the number of generating moves on triple-crossing diagrams, and derive a minimal generating set of moves connecting triple-crossing diagrams of the same knot.


1960 ◽  
Vol 12 ◽  
pp. 447-462 ◽  
Author(s):  
Ruth Rebekka Struik

In this paper G = F/Fn is studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. The case of n = 4 is completely treated (F/F2 is well known; F/F3 is completely treated in (2)); special cases of n > 4 are studied; a partial conjecture is offered in regard to the unsolved cases. For n = 4 a multiplication table and other properties are given.The problem arose from Golovin's work on nilpotent products ((1), (2), (3)) which are of interest because they are generalizations of the free and direct product of groups: all nilpotent groups are factor groups of nilpotent products in the same sense that all groups are factor groups of free products, and all Abelian groups are factor groups of direct products. In particular (as is well known) every finite Abelian group is a direct product of cyclic groups. Hence it becomes of interest to investigate nilpotent products of finite cyclic groups.


Sign in / Sign up

Export Citation Format

Share Document