scholarly journals Linear Convergence of Split Equality Common Null Point Problem with Application to Optimization Problem

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1836
Author(s):  
Yaqian Jiang ◽  
Rudong Chen ◽  
Luoyi Shi

The purpose of this paper is to propose an iterative algorithm for solving the split equality common null point problem (SECNP), which is to find an element of the set of common zero points for a finite family of maximal monotone operators in Hilbert spaces. We introduce the concept of bounded linear regularity for the SECNP and construct several sufficient conditions to ensure the linear convergence of the algorithm. Moreover, some numerical experiments are given to test the validity of our results.

Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Lingling Huang ◽  
Sanyang Liu ◽  
Weifeng Gao

This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequalities are considered. Some preliminary computational results are reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Huan-chun Wu ◽  
Cao-zong Cheng

We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of zeros of the sum of maximal monotone operators, and we obtain strong convergence theorems in Hilbert spaces. We also apply our results to the variational inequality and convex minimization problems. Our results extend and improve the recent result of Takahashi et al. (2012).


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Zhangsong Yao ◽  
Sun Young Cho ◽  
Shin Min Kang ◽  
Li-Jun Zhu

We present two algorithms for finding a zero of the sum of two monotone operators and a fixed point of a nonexpansive operator in Hilbert spaces. We show that these two algorithms converge strongly to the minimum norm common element of the zero of the sum of two monotone operators and the fixed point of a nonexpansive operator.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Young-Ye Huang ◽  
Chung-Chien Hong

We at first raise the so called split feasibility fixed point problem which covers the problems of split feasibility, convex feasibility, and equilibrium as special cases and then give two types of algorithms for finding solutions of this problem and establish the corresponding strong convergence theorems for the sequences generated by our algorithms. As a consequence, we apply them to study the split feasibility problem, the zero point problem of maximal monotone operators, and the equilibrium problem and to show that the unique minimum norm solutions of these problems can be obtained through our algorithms. Since the variational inequalities, convex differentiable optimization, and Nash equilibria in noncooperative games can be formulated as equilibrium problems, each type of our algorithms can be considered as a generalized methodology for solving the aforementioned problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Kamonrat Nammanee ◽  
Suthep Suantai ◽  
Prasit Cholamjiak

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems.


Sign in / Sign up

Export Citation Format

Share Document