scholarly journals A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2245
Author(s):  
Antonio Falcó ◽  
Lucía Hilario ◽  
Nicolás Montés ◽  
Marta C. Mora ◽  
Enrique Nadal

A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6642
Author(s):  
Rafal Szczepanski ◽  
Artur Bereit ◽  
Tomasz Tarczewski

Mobile robots in industry are commonly used in warehouses and factories. To achieve the highest production rate, requirements for path planning algorithms have caused researchers to pay significant attention to this problem. The Artificial Potential Field algorithm, which is a local path planning algorithm, has been previously modified to obtain higher smoothness of path, to solve the stagnation problem and to jump off the local minimum. The last itemized problem is taken into account in this paper—local minimum avoidance. Most of the modifications of Artificial Potential Field algorithms focus on a mechanism to jump off a local minimum when robots stagnate. From the efficiency point of view, the mobile robot should bypass the local minimum instead of jumping off it. This paper proposes a novel Artificial Potential Field supported by augmented reality to bypass the upcoming local minimum. The algorithm predicts the upcoming local minimum, and then the mobile robot’s perception is augmented to bypass it. The proposed method allows the generation of shorter paths compared with jumping-off techniques, due to lack of stagnation in a local minimum. This method was experimentally verified using a Husarion ROSbot 2.0 PRO mobile robot and Robot Operating System in a laboratory environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Xiaojing Fan ◽  
Yinjing Guo ◽  
Hui Liu ◽  
Bowen Wei ◽  
Wenhong Lyu

With the topics related to the intelligent AUV, control and navigation have become one of the key researching fields. This paper presents a concise and reliable path planning method for AUV based on the improved APF method. AUV can make the decision on obstacle avoidance in terms of the state of itself and the motion of obstacles. The artificial potential field (APF) method has been widely applied in static real-time path planning. In this study, we present the improved APF method to solve some inherent shortcomings, such as the local minima and the inaccessibility of the target. A distance correction factor is added to the repulsive potential field function to solve the GNRON problem. The regular hexagon-guided method is proposed to improve the local minima problem. Meanwhile, the relative velocity method about the moving objects detection and avoidance is proposed for the dynamic environment. This method considers not only the spatial location but also the magnitude and direction of the velocity of the moving objects, which can avoid dynamic obstacles in time. So the proposed path planning method is suitable for both static and dynamic environments. The virtual environment has been built, and the emulation has been in progress in MATLAB. Simulation results show that the proposed method has promising feasibility and efficiency in the AUV real-time path planning. We demonstrate the performance of the proposed method in the real environment. Experimental results show that the proposed method is capable of avoiding the obstacles efficiently and finding an optimized path.


Sign in / Sign up

Export Citation Format

Share Document