scholarly journals Linear Algorithms for the Hosoya Index and Hosoya Matrix of a Tree

Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Aleksander Vesel

The Hosoya index of a graph is defined as the total number of its independent edge sets. This index is an important example of topological indices, a molecular-graph based structure descriptor that is of significant interest in combinatorial chemistry. The Hosoya index inspires the introduction of a matrix associated with a molecular acyclic graph called the Hosoya matrix. We propose a simple linear-time algorithm, which does not require pre-processing, to compute the Hosoya index of an arbitrary tree. A similar approach allows us to show that the Hosoya matrix can be computed in constant time per entry of the matrix.

1987 ◽  
Vol 1 (3) ◽  
pp. 293-298 ◽  
Author(s):  
D.Z. Du ◽  
F. K. Hwang

A consecutive-2 graph is a graph where each vertex is associated with a failure probability and the graph is considered failed if any two adjacent vertices both fail. Recently, the problem of computing reliability for general consecutive-2 graph was shown to be #P-complete while polynomial algorithms exist for trees. In this paper, we give a linear time algorithm for a class of graphs including forests and cycles.For a given set of failure probabilities qi, the assignment of qi to the vertices of a given graph is optimal if it maximizes the reliability of that graph. It is known that optimal assignments for trees require messy computations while linear algorithms exist for lines and stars. In this paper, we prove that the optimal reliability of any n−tree is bounded between those of an n−line and an n−star.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Bo Bi ◽  
Muhammad Kamran Jamil ◽  
Khawaja Muhammad Fahd ◽  
Tian-Le Sun ◽  
Imran Ahmad ◽  
...  

Let G = V G , E G be a molecular graph, where V G and E G are the sets of vertices (atoms) and edges (bonds). A topological index of a molecular graph is a numerical quantity which helps to predict the chemical/physical properties of the molecules. The Wiener, Wiener polarity, and the terminal Wiener indices are the distance-based topological indices. In this paper, we described a linear time algorithm (LTA) that computes the Wiener index for acyclic graphs and extended this algorithm for unicyclic graphs. The same algorithms are modified to compute the terminal Wiener index and the Wiener polarity index. All these algorithms compute the indices in time O n .


2017 ◽  
Vol 11 (2) ◽  
pp. 273-298 ◽  
Author(s):  
Rodrigo Braga ◽  
Virgínia Rodrigues ◽  
Vilmar Trevisan

We present a linear time algorithm that computes the number of eigenvalues of a unicyclic graph in a given real interval. It operates directly on the graph, so that the matrix is not needed explicitly. The algorithm is applied to study the multiplicities of eigenvalues of closed caterpillars, obtain the spectrum of balanced closed caterpillars and give sufficient conditions for these graphs to be non-integral. We also use our method to study the distribution of eigenvalues of unicyclic graphs formed by adding a fixed number of copies of a path to each node in a cycle. We show that they are not integral graphs.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


Sign in / Sign up

Export Citation Format

Share Document