scholarly journals The Approximate Analytic Solution of the Time-Fractional Black-Scholes Equation with a European Option Based on the Katugampola Fractional Derivative

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 214
Author(s):  
Sivaporn Ampun ◽  
Panumart Sawangtong

In the finance market, it is well known that the price change of the underlying fractal transmission system can be modeled with the Black-Scholes equation. This article deals with finding the approximate analytic solutions for the time-fractional Black-Scholes equation with the fractional integral boundary condition for a European option pricing problem in the Katugampola fractional derivative sense. It is well known that the Katugampola fractional derivative generalizes both the Riemann–Liouville fractional derivative and the Hadamard fractional derivative. The technique used to find the approximate analytic solutions of the time-fractional Black-Scholes equation is the generalized Laplace homotopy perturbation method, the combination of the generalized Laplace transform and homotopy perturbation method. The approximate analytic solution for the problem is in the form of the generalized Mittag-Leffler function. This shows that the generalized Laplace homotopy perturbation method is one of the most effective methods to construct approximate analytic solutions of the fractional differential equations. Finally, the approximate analytic solutions of the Riemann–Liouville and Hadamard fractional Black-Scholes equation with the European option are also shown.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

The homotopy perturbation method, Sumudu transform, and He’s polynomials are combined to obtain the solution of fractional Black-Scholes equation. The fractional derivative is considered in Caputo sense. Further, the same equation is solved by homotopy Laplace transform perturbation method. The results obtained by the two methods are in agreement. The approximate analytical solution of Black-Scholes is calculated in the form of a convergence power series with easily computable components. Some illustrative examples are presented to explain the efficiency and simplicity of the proposed method.


Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Diptiranjan Behera ◽  
Snehashish Chakraverty

AbstractThis paper investigates the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order. The Homotopy Perturbation Method (HPM) is used to obtain the dynamic response. Unit step function response is considered for the analysis. The obtained results are depicted in various plots. From the results obtained it is interesting to note that by increasing the order of the fractional derivative the beam suffers less oscillation. Similar observations have also been made by keeping the order of the fractional derivative constant and varying the damping ratios. Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan [Appl. Math. Mech. 28, 219 (2007)] to show the effectiveness and validation of this method.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 33
Author(s):  
Sirunya Thanompolkrang ◽  
Wannika Sawangtong ◽  
Panumart Sawangtong

In the finance market, the Black–Scholes equation is used to model the price change of the underlying fractal transmission system. Moreover, the fractional differential equations recently are accepted by researchers that fractional differential equations are a powerful tool in studying fractal geometry and fractal dynamics. Fractional differential equations are used in modeling the various important situations or phenomena in the real world such as fluid flow, acoustics, electromagnetic, electrochemistry and material science. There is an important question in finance: “Can the fractional differential equation be applied in the financial market?”. The answer is “Yes”. Due to the self-similar property of the fractional derivative, it can reply to the long-range dependence better than the integer-order derivative. Thus, these advantages are beneficial to manage the fractal structure in the financial market. In this article, the classical Black–Scholes equation with two assets for the European call option is modified by replacing the order of ordinary derivative with the fractional derivative order in the Caputo type Katugampola fractional derivative sense. The analytic solution of time-fractional Black–Scholes European call option pricing equation with two assets is derived by using the generalized Laplace homotopy perturbation method. The used method is the combination of the homotopy perturbation method and generalized Laplace transform. The analytic solution of the time-fractional Black–Scholes equation is carried out in the form of a Mittag–Leffler function. Finally, the effects of the fractional-order in the Caputo type Katugampola fractional derivative to change of a European call option price are shown.


2019 ◽  
Author(s):  
M. Radha ◽  
S. Balamuralitharan ◽  
S. Geethamalini ◽  
V. Geetha ◽  
A. Rathinasamy

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanqin Liu

We consider the initial stage of space-time fractional generalized biological equation in radial symmetry. Dimensionless multiorder fractional nonlinear equation was first given, and approximate solutions were derived in the form of series using the homotopy perturbation method with a new modification. And the influence of fractional derivative is also discussed.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 3023-3030 ◽  
Author(s):  
Naveed Anjum ◽  
Qura Ain

In this article He?s fractional derivative is studied for time fractional Camassa-Holm equation. To transform the considered fractional model into a differential equation, the fractional complex transform is used and He?s homotopy perturbation method is adopted to solve the equation. Physical understanding of the fractional complex transform is elucidated by the two-scale fractal theory.


Sign in / Sign up

Export Citation Format

Share Document