scholarly journals On the Local Convergence of Two-Step Newton Type Method in Banach Spaces Under Generalized Lipschitz Conditions

Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 669
Author(s):  
Akanksha Saxena ◽  
Ioannis K. Argyros ◽  
Jai P. Jaiswal ◽  
Christopher Argyros ◽  
Kamal R. Pardasani

The motive of this paper is to discuss the local convergence of a two-step Newton-type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e., L-average condition. Also, some results on convergence of the same method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L-average particularly it is assumed that L is positive integrable function but not necessarily non-decreasing. Our new idea gives a tighter convergence analysis without new conditions. The proposed technique is useful in expanding the applicability of iterative methods. Useful examples justify the theoretical conclusions.

Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yonghui Ling ◽  
Xiubin Xu ◽  
Shaohua Yu

The present paper is concerned with the semilocal as well as the local convergence problems of Newton-Steffensen’s method to solve nonlinear operator equations in Banach spaces. Under the assumption that the second derivative of the operator satisfies -condition, the convergence criterion and convergence ball for Newton-Steffensen’s method are established.


Author(s):  
Ioannis K Argyros ◽  
Santhosh George

The aim of this article is to extend the local as well as the semi-local convergence analysis of multi-point iterative methods using center Lipschitz conditions in combination with our idea, of the restricted convergence region. It turns out that this way a finer convergence analysis for these methods is obtained than in earlier works and without additional hypotheses. Numerical examples favoring our technique over earlier ones completes this article.


2019 ◽  
Vol 17 (05) ◽  
pp. 1940017
Author(s):  
Ali Saleh Alshomrani ◽  
Ioannis K. Argyros ◽  
Ramandeep Behl

Our principle aim in this paper is to present a new reconstruction of classical Chebyshev–Halley schemes having optimal fourth and eighth-order of convergence for all parameters [Formula: see text] unlike in the earlier studies. In addition, we analyze the local convergence of them by using hypotheses requiring the first-order derivative of the involved function [Formula: see text] and the Lipschitz conditions. In addition, we also formulate their theoretical radius of convergence. Several numerical examples originated from real life problems demonstrate that they are applicable to a broad range of scalar equations, where previous studies cannot be used. Finally, a dynamical study of them also demonstrates that bigger and more promising basins of attractions are obtained.


2018 ◽  
Vol 330 ◽  
pp. 732-741 ◽  
Author(s):  
Abhimanyu Kumar ◽  
D.K. Gupta ◽  
Eulalia Martínez ◽  
Sukhjit Singh

Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 233 ◽  
Author(s):  
Ioannis Argyros ◽  
Santhosh George

The aim of this article is to present a unified semi-local convergence analysis for a k-step iterative method containing the inverse of a flexible and frozen linear operator for Banach space valued operators. Special choices of the linear operator reduce the method to the Newton-type, Newton’s, or Stirling’s, or Steffensen’s, or other methods. The analysis is based on center, as well as Lipschitz conditions and our idea of the restricted convergence region. This idea defines an at least as small region containing the iterates as before and consequently also a tighter convergence analysis.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850048
Author(s):  
Sukhjit Singh ◽  
Dharmendra Kumar Gupta ◽  
Randhir Singh ◽  
Mehakpreet Singh ◽  
Eulalia Martinez

The convergence analysis both local under weaker Argyros-type conditions and semilocal under [Formula: see text]-condition is established using first order Fréchet derivative for an iteration of fifth order in Banach spaces. This avoids derivatives of higher orders which are either difficult to compute or do not exist at times. The Lipchitz and the Hölder conditions are particular cases of the [Formula: see text]-condition. Examples can be constructed for which the Lipchitz and Hölder conditions fail but the [Formula: see text]-condition holds. Recurrence relations are used for the semilocal convergence analysis. Existence and uniqueness theorems and the error bounds for the solution are provided. Different examples are solved and convergence balls for each of them are obtained. These examples include Hammerstein-type integrals to demonstrate the applicability of our approach.


Sign in / Sign up

Export Citation Format

Share Document