scholarly journals On the Simulation of a Special Class of Time-Inhomogeneous Diffusion Processes

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 818
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

General methods to simulate probability density functions and first passage time densities are provided for time-inhomogeneous stochastic diffusion processes obtained via a composition of two Gauss–Markov processes conditioned on the same initial state. Many diffusion processes with time-dependent infinitesimal drift and infinitesimal variance are included in the considered class. For these processes, the transition probability density function is explicitly determined. Moreover, simulation procedures are applied to the diffusion processes obtained starting from Wiener and Ornstein–Uhlenbeck processes. Specific examples in which the infinitesimal moments include periodic functions are discussed.

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 279
Author(s):  
Enrica Pirozzi

Symmetry properties of the Brownian motion and of some diffusion processes are useful to specify the probability density functions and the first passage time density through specific boundaries. Here, we consider the class of Gauss-Markov processes and their symmetry properties. In particular, we study probability densities of such processes in presence of a couple of Daniels-type boundaries, for which closed form results exit. The main results of this paper are the alternative proofs to characterize the transition probability density between the two boundaries and the first passage time density exploiting exclusively symmetry properties. Explicit expressions are provided for Wiener and Ornstein-Uhlenbeck processes.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 555 ◽  
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

We consider two different time-inhomogeneous diffusion processes useful to model the evolution of a population in a random environment. The first is a Gompertz-type diffusion process with time-dependent growth intensity, carrying capacity and noise intensity, whose conditional median coincides with the deterministic solution. The second is a shifted-restricted Gompertz-type diffusion process with a reflecting condition in zero state and with time-dependent regulation functions. For both processes, we analyze the transient and the asymptotic behavior of the transition probability density functions and their conditional moments. Particular attention is dedicated to the first-passage time, by deriving some closed form for its density through special boundaries. Finally, special cases of periodic regulation functions are discussed.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


1991 ◽  
Vol 28 (4) ◽  
pp. 903-909 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
A. Juan Gonzalez ◽  
P. Román Román

In Giorno et al. (1988) a new method for constructing first-passage-time probability density functions is outlined. This rests on the possibility of constructing the transition p.d.f. of a new time-homogeneous diffusion process in terms of a preassigned transition p.d.f. without making use of the classical space-time transformations of the Kolmogorov equation (Ricciardi (1976)).In the present paper we give an extension of this result to the case of a diffusion process X(t) which is not necessarily time-homogeneous, and a few examples are presented.


1991 ◽  
Vol 28 (04) ◽  
pp. 903-909 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
A. Juan Gonzalez ◽  
P. Román Román

In Giorno et al. (1988) a new method for constructing first-passage-time probability density functions is outlined. This rests on the possibility of constructing the transition p.d.f. of a new time-homogeneous diffusion process in terms of a preassigned transition p.d.f. without making use of the classical space-time transformations of the Kolmogorov equation (Ricciardi (1976)). In the present paper we give an extension of this result to the case of a diffusion process X(t) which is not necessarily time-homogeneous, and a few examples are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Peng ◽  
Zaiming Liu

Using an integral equation associated with generalized backward Kolmogorov's equation for the transition probability density function, recurrence relations are derived for the moments of the time of first exit of jump-diffusions with Markovian switching. The results are used to find the expectation of first passage time of some financial models.


Author(s):  
Masanori Shintani ◽  
Hiroyuki Ikuta ◽  
Hajime Takada

In this paper, the transition probability density functions between response velocity and response displacement in nonlinear vibration systems which have the restoring force characteristic of a cubic equation are governed by the Fokker-Planck Equation. The experimental probability density functions are compared with analytical results. The analytical model of the cubic equation as Duffing Equation is proposed by the restoring force characteristic of the nonlinear vibration system with gaps in the experiments. However, a slight difference for the frequency range of the transfer function was shown by simulation results. Then, it is considered using transition probability density functions in the response characteristic. For stationary random input waves, the probability density function between the response displacement and the response velocity are easily estimated by the Fokker-Planck Equation and the Duffing Equation. The slight difference of the transfer function of the response acceleration is evaluated by the scattering of the restoring force characteristic estimated by the probability density function and self-natural frequency curve. The R.M.S. value and the transfer function of the experimental results are compared with the analytical results. It is thought that the estimation of the probability density function of the response has validity. It is thought that the evaluation of the nonlinear vibration characteristics by the probability density function is valid.


Sign in / Sign up

Export Citation Format

Share Document