special boundaries
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 236
Author(s):  
Yao Lin ◽  
Shan Liu ◽  
Tao Wu ◽  
Guangchun Wang

The “torsion and annealing” grain boundary modification of pure nickel wires with different diameters was carried out in this paper. The effects of torsional cycles as well as unidirectional/bidirectional torsion methods on grain boundary characteristic distribution and plasticity were investigated. The fraction of special boundaries, grain boundary characteristic distributions and grain orientations of samples with different torsion parameters were detected by electron backscatter diffraction. Hardness measurement was conducted to characterize the plasticity. Then, the relationship between micro grain boundary characteristics and macro plasticity was explored. It was found that the special boundaries, especially Σ3 boundaries, are increased after torsion and annealing and effectively broke the random boundary network. The bidirectional torsion with small torsional circulation unit was the most conducive way to improve the fraction of special boundaries. The experiments also showed that there was a good linear correlation between the fraction of special boundaries and hardness. The plasticization mechanism was that plenty of grains with Σ3 boundaries, [001] orientations and small Taylor factor were generated in the thermomechanical processes. Meanwhile, the special boundaries broke the random boundary network. Therefore, the material was able to achieve greater plastic deformation. Moreover, the mechanism of torsion and annealing on the plasticity of pure nickel was illustrated, which provides theoretical guidance for the pre-plasticization of nickel workpieces.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1653
Author(s):  
Toshiro Tomida ◽  
Sven C. Vogel ◽  
Yusuke Onuki ◽  
Shigeo Sato

Texture memory is a phenomenon in which retention of initial textures occurs after a complete cycle of forward and backward transformations, and it occurs in various phase-transforming materials including cubic and hexagonal metals such as steels and Ti and Zr alloys. Texture memory is known to be caused by the phenomena called variant selection, in which some of the allowed child orientations in an orientation relationship between the parent and child phases are preferentially selected. Without such variant selection, the phase transformations would randomize preferred orientations. In this article, the methods of prediction of texture memory and mechanisms of variant selections in hexagonal metals are explored. The prediction method using harmonic expansion of orientation distribution functions with the variant selection in which the Burgers orientation relationship, {110}β//{0001}α-hex <11¯1>β//21¯1¯0α-hex, is held with two or more adjacent parent grains at the same time, called “double Burgers orientation relation (DBOR)”, is introduced. This method is shown to be a powerful tool by which to analyze texture memory and ultimately provide predictive capabilities for texture changes during phase transformations. Variation in nucleation and growth rates on special boundaries and an extensive growth of selected variants are also described. Analysis of textures of commercially pure Ti observed in situ by pulsed neutron diffraction reveals that the texture memory in CP-Ti is indeed quite well predicted by consideration of the mechanism of DBOR. The analysis also suggests that the nucleation and growth rates on the special boundary of 90° rotation about 21¯1¯0α-hex should be about three times larger than those of the other special boundaries, and the selected variants should grow extensively into not only one parent grain but also other grains in α-hex(hexagonal)→β(bcc) transformation. The model calculations of texture development during two consecutive cycles of α-hex→β→α-hex transformation in CP-Ti and Zr are also shown.


Author(s):  
Flávia da Cruz Gallo ◽  
Luiz Maurício Barreto de Azevedo ◽  
Arthur Ribeiro Figueiredo ◽  
Amanda de Vasconcelos Varela ◽  
Leonardo Sales Araújo ◽  
...  

2021 ◽  
Vol 122 (4) ◽  
pp. 396-402
Author(s):  
M. L. Lobanov ◽  
V. I. Pastukhov ◽  
A. A. Redikul’tsev

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 865
Author(s):  
Dmitry V. Lychagin ◽  
Elvira N. Kungulova ◽  
Evgeny N. Moskvichev ◽  
Anatoly A. Tomilenko ◽  
Platon A. Tishin

We investigated the microstructural and crystallographic features of quartz from complex vein systems associated with the development of thrust and shear deformations in Western Transbaikalia using electron back scatter diffraction (EBSD) and optical microscopy. Vein quartz systems were studied to obtain insights on the mechanisms and localization of strains in quartz, in plastic and semibrittle conditions close to the brittle–ductile transition, and their relationship to the processes of regional deformations. Five types of microstructures of vein quartz were distinguished. We established that the preferred mechanisms of deformation of the studied quartz were dislocation glide and creep at average deformation rates and temperatures of 300–400 °C with subsequent heating and dynamic and static recrystallization. The formation of special boundaries of the Dauphiné twinning type and multiple boundaries with angles of misorientation of 30° and 90° were noted. The distribution of the selected types in the differently oriented veins was analyzed. The presence of three generations of vein quartz was established. Microstructural and crystallographic features of vein quartz aggregates allow us to mark the territory’s multi-stage development (with the formation of syntectonic and post-deformation quartz).


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 555 ◽  
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

We consider two different time-inhomogeneous diffusion processes useful to model the evolution of a population in a random environment. The first is a Gompertz-type diffusion process with time-dependent growth intensity, carrying capacity and noise intensity, whose conditional median coincides with the deterministic solution. The second is a shifted-restricted Gompertz-type diffusion process with a reflecting condition in zero state and with time-dependent regulation functions. For both processes, we analyze the transient and the asymptotic behavior of the transition probability density functions and their conditional moments. Particular attention is dedicated to the first-passage time, by deriving some closed form for its density through special boundaries. Finally, special cases of periodic regulation functions are discussed.


Sign in / Sign up

Export Citation Format

Share Document