scholarly journals First Passage Time Moments of Jump-Diffusions with Markovian Switching

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Peng ◽  
Zaiming Liu

Using an integral equation associated with generalized backward Kolmogorov's equation for the transition probability density function, recurrence relations are derived for the moments of the time of first exit of jump-diffusions with Markovian switching. The results are used to find the expectation of first passage time of some financial models.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 279
Author(s):  
Enrica Pirozzi

Symmetry properties of the Brownian motion and of some diffusion processes are useful to specify the probability density functions and the first passage time density through specific boundaries. Here, we consider the class of Gauss-Markov processes and their symmetry properties. In particular, we study probability densities of such processes in presence of a couple of Daniels-type boundaries, for which closed form results exit. The main results of this paper are the alternative proofs to characterize the transition probability density between the two boundaries and the first passage time density exploiting exclusively symmetry properties. Explicit expressions are provided for Wiener and Ornstein-Uhlenbeck processes.



1984 ◽  
Vol 21 (02) ◽  
pp. 302-314 ◽  
Author(s):  
L. M. Ricciardi ◽  
L. Sacerdote ◽  
S. Sato

We prove that for a diffusion process the first-passage-time p.d.f. through a continuous-time function with bounded derivative satisfies a Volterra integral equation of the second kind whose kernel and right-hand term are probability currents. For the case of the standard Wiener process this equation is solved in closed form not only for the class of boundaries already introduced by Park and Paranjape [15] but also for all boundaries of the type S(I) = a + bt ‘/p (p ∼ 2, a, b E ∼) for which no explicit analytical results have previously been available.



Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 555 ◽  
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

We consider two different time-inhomogeneous diffusion processes useful to model the evolution of a population in a random environment. The first is a Gompertz-type diffusion process with time-dependent growth intensity, carrying capacity and noise intensity, whose conditional median coincides with the deterministic solution. The second is a shifted-restricted Gompertz-type diffusion process with a reflecting condition in zero state and with time-dependent regulation functions. For both processes, we analyze the transient and the asymptotic behavior of the transition probability density functions and their conditional moments. Particular attention is dedicated to the first-passage time, by deriving some closed form for its density through special boundaries. Finally, special cases of periodic regulation functions are discussed.



2011 ◽  
Vol 23 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Yi Dong ◽  
Stefan Mihalas ◽  
Ernst Niebur

An accurate calculation of the first passage time probability density (FPTPD) is essential for computing the likelihood of solutions of the stochastic leaky integrate-and-fire model. The previously proposed numerical calculation of the FPTPD based on the integral equation method discretizes the probability current of the voltage crossing the threshold. While the method is accurate for high noise levels, we show that it results in large numerical errors for small noise. The problem is solved by analytically computing, in each time bin, the mean probability current. Efficiency is further improved by identifying and ignoring time bins with negligible mean probability current.



1984 ◽  
Vol 21 (2) ◽  
pp. 302-314 ◽  
Author(s):  
L. M. Ricciardi ◽  
L. Sacerdote ◽  
S. Sato

We prove that for a diffusion process the first-passage-time p.d.f. through a continuous-time function with bounded derivative satisfies a Volterra integral equation of the second kind whose kernel and right-hand term are probability currents. For the case of the standard Wiener process this equation is solved in closed form not only for the class of boundaries already introduced by Park and Paranjape [15] but also for all boundaries of the type S(I) = a + bt ‘/p (p ∼ 2, a, b E ∼) for which no explicit analytical results have previously been available.



1987 ◽  
Vol 19 (04) ◽  
pp. 784-800 ◽  
Author(s):  
A. Buonocore ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein–Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries.



2002 ◽  
Vol 34 (04) ◽  
pp. 869-887 ◽  
Author(s):  
Axel Lehmann

Let X be a one-dimensional strong Markov process with continuous sample paths. Using Volterra-Stieltjes integral equation techniques we investigate Hölder continuity and differentiability of first passage time distributions of X with respect to continuous lower and upper moving boundaries. Under mild assumptions on the transition function of X we prove the existence of a continuous first passage time density to one-sided differentiable moving boundaries and derive a new integral equation for this density. We apply our results to Brownian motion and its nonrandom Markovian transforms, in particular to the Ornstein-Uhlenbeck process.



1995 ◽  
Vol 32 (03) ◽  
pp. 635-648 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
P. Román Román ◽  
F. Torres Ruiz

In this paper we prove the validity of the Volterra integral equation for the evaluation of first-passage-time probability densities through varying boundaries, given by Buonocore et al. [1], for the case of diffusion processes not necessarily time-homogeneous. We study, specifically those processes that can be obtained from the Wiener process in the sense of [5]. A study of the kernel of the integral equation, in the same way as that by Buonocore et al. [1], is done. We obtain the boundaries for which closed-form solutions of the integral equation, without having to solve the equation, can be obtained. Finally, a few examples are given to indicate the actual use of our method.



1987 ◽  
Vol 19 (4) ◽  
pp. 784-800 ◽  
Author(s):  
A. Buonocore ◽  
A. G. Nobile ◽  
L. M. Ricciardi

The first-passage-time p.d.f. through a time-dependent boundary for one-dimensional diffusion processes is proved to satisfy a new Volterra integral equation of the second kind involving two arbitrary continuous functions. Use of this equation is made to prove that for the Wiener and the Ornstein–Uhlenbeck processes the singularity of the kernel can be removed by a suitable choice of these functions. A simple and efficient numerical procedure for the solution of the integral equation is provided and its convergence is briefly discussed. Use of this equation is finally made to obtain closed-form expressions for first-passage-time p.d.f.'s in the case of various time-dependent boundaries.



Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 818
Author(s):  
Virginia Giorno ◽  
Amelia G. Nobile

General methods to simulate probability density functions and first passage time densities are provided for time-inhomogeneous stochastic diffusion processes obtained via a composition of two Gauss–Markov processes conditioned on the same initial state. Many diffusion processes with time-dependent infinitesimal drift and infinitesimal variance are included in the considered class. For these processes, the transition probability density function is explicitly determined. Moreover, simulation procedures are applied to the diffusion processes obtained starting from Wiener and Ornstein–Uhlenbeck processes. Specific examples in which the infinitesimal moments include periodic functions are discussed.



Sign in / Sign up

Export Citation Format

Share Document