scholarly journals Integral Equations of Non-Integer Orders and Discrete Maps with Memory

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1177
Author(s):  
Vasily E. Tarasov

In this paper, we use integral equations of non-integer orders to derive discrete maps with memory. Note that discrete maps with memory were not previously derived from fractional integral equations of non-integer orders. Such a derivation of discrete maps with memory is proposed for the first time in this work. In this paper, we derived discrete maps with nonlocality in time and memory from exact solutions of fractional integral equations with the Riemann–Liouville and Hadamard type fractional integrals of non-integer orders and periodic sequence of kicks that are described by Dirac delta-functions. The suggested discrete maps with nonlocality in time are derived from these fractional integral equations without any approximation and can be considered as exact discrete analogs of these equations. The discrete maps with memory, which are derived from integral equations with the Hadamard type fractional integrals, do not depend on the period of kicks.

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 517
Author(s):  
Jin Liang ◽  
Yunyi Mu

In this paper, we are concerned with the ψ-fractional integrals, which is a generalization of the well-known Riemann–Liouville fractional integrals and the Hadamard fractional integrals, and are useful in the study of various fractional integral equations, fractional differential equations, and fractional integrodifferential equations. Our main goal is to present some new properties for ψ-fractional integrals involving a general function ψ by establishing several new equalities for the ψ-fractional integrals. We also give two applications of our new equalities.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ghorban Khalilzadeh Ranjbar ◽  
Mohammad Esmael Samei

Abstract The aim of this work is to usher in tripled b-metric spaces, triple weakly $\alpha _{s}$ α s -admissible, triangular partially triple weakly $\alpha _{s}$ α s -admissible and their properties for the first time. Also, we prove some theorems about coincidence and common fixed point for six self-mappings. On the other hand, we present a new model, talk over an application of our results to establish the existence of common solution of the system of Volterra-type integral equations in a triple b-metric space. Also, we give some example to illustrate our theorems in the section of main results. Finally, we show an application of primary results.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1464
Author(s):  
Vasily E. Tarasov

General fractional dynamics (GFDynamics) can be viewed as an interdisciplinary science, in which the nonlocal properties of linear and nonlinear dynamical systems are studied by using general fractional calculus, equations with general fractional integrals (GFI) and derivatives (GFD), or general nonlocal mappings with discrete time. GFDynamics implies research and obtaining results concerning the general form of nonlocality, which can be described by general-form operator kernels and not by its particular implementations and representations. In this paper, the concept of “general nonlocal mappings” is proposed; these are the exact solutions of equations with GFI and GFD at discrete points. In these mappings, the nonlocality is determined by the operator kernels that belong to the Sonin and Luchko sets of kernel pairs. These types of kernels are used in general fractional integrals and derivatives for the initial equations. Using general fractional calculus, we considered fractional systems with general nonlocality in time, which are described by equations with general fractional operators and periodic kicks. Equations with GFI and GFD of arbitrary order were also used to derive general nonlocal mappings. The exact solutions for these general fractional differential and integral equations with kicks were obtained. These exact solutions with discrete timepoints were used to derive general nonlocal mappings without approximations. Some examples of nonlocality in time are described.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Tatiana Odzijewicz ◽  
Agnieszka B. Malinowska ◽  
Delfim F. M. Torres

We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed.


1969 ◽  
Vol 51 (6) ◽  
pp. 2359-2362 ◽  
Author(s):  
Kenneth G. Kay ◽  
H. David Todd ◽  
Harris J. Silverstone

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Alejandro Caicedo ◽  
Claudio Cuevas ◽  
Hernán R. Henríquez

We study the existence of S-asymptotically ω-periodic solutions for a class of abstract partial integro-differential equations and for a class of abstract partial integrodifferential equations with delay. Applications to integral equations arising in the study of heat conduction in materials with memory are shown.


2021 ◽  
Vol 6 (10) ◽  
pp. 11167-11186
Author(s):  
Hari M. Srivastava ◽  
◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Abdullah M. Alsharif ◽  
...  

<abstract><p>The main goal of this article is first to introduce a new generalization of the fractional integral operators with a certain modified Mittag-Leffler kernel and then investigate the Chebyshev inequality via this general family of fractional integral operators. We improve our results and we investigate the Chebyshev inequality for more than two functions. We also derive some inequalities of this type for functions whose derivatives are bounded above and bounded below. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. Finally, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view.</p></abstract>


Author(s):  
M.J.S. Sahir

In this paper, we present an extension of dynamic Renyi’s inequality on time scales by using the time scale Riemann–Liouville type fractional integral. Furthermore, we find generalizations of the well–known Lyapunov’s inequality and Radon’s inequality on time scales by using the time scale Riemann–Liouville type fractional integrals. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. В этой статье мы представляем расширение динамического неравенства Реньи на шкалы времени с помощью дробного интеграла типа Римана-Лиувилля. Кроме того, мы находим обобщения хорошо известного неравенства Ляпунова и неравенства Радона на шкалах времени с помощью дробных интегралов типа Римана-Лиувилля на шкале. Наши исследования объединяют и расширяют некоторые непрерывные неравенства и соответствующие им дискретные аналоги.


Sign in / Sign up

Export Citation Format

Share Document