scholarly journals Optimal Investment in Preservation Technology for Variable Demand under Trade-Credit and Shortages

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1301
Author(s):  
Mrudul Y. Jani ◽  
Manish R. Betheja ◽  
Urmila Chaudhari ◽  
Biswajit Sarkar

In particular business transactions, the supplier usually provides an admissible delay in settlement to its vendor to encourage further sales. Additionally, the demand for the commodity is inversely proportional to the function of the sales price, which is non-linear and, in some situations, a holding cost rises over time. Moreover, many goods often deteriorate consistently and shall not be sold after their expiration dates. This study analyses a model for perishable products with a maximum life span with price-dependent demand and trade credit by assimilating these variations and under the supposition of time-varying holding cost. Furthermore, to diminish the rate of deterioration, investment for preservation technology is often taken into account beforehand. Based on real-life circumstances, shortages are admitted and backlogged partially, with an exponential rise in wait time before the new good emerges. The key ambition is to calculate the optimum investment under preservation, sales price, and cycle time using the classical optimization algorithm to maximize the vendor’s net profit. Additionally, to clarify the outcomes, the numerical illustrations are addressed, and the sensitivity analysis of significant parameters is eventually implemented.

2020 ◽  
Vol 30 (2) ◽  
pp. 237-250
Author(s):  
Aditi Khanna ◽  
P Priyamvada ◽  
Chandra Jaggi

Organizations are keen on rethinking and optimizing their existing inventory strategies so as to attain profitability. The phenomenon of deterioration is a common phenomenon while managing any inventory system. However, it could become a major challenge for the business if not dealt carefully. An investment in preservation technology is by far the most inuential move towards dealing with deterioration proficiently. Additionally, it is noticed that the demand pattern of many products is reliant on its availability and usability. Thus, considering demand of the product to be ?stock-dependent" is a more practical approach. Further, in case of deteriorating items, it is observed that the longer an item stays in the system the higher is its holding cost. Therefore, the model assumes the holding cost to be time varying. Hence, the proposed framework aims to develop an inventory model for deteriorating items with stock-dependent demand and time-varying holding cost under an investment in preservation technology. The objective is to determine the optimal investment in preservation technology and the optimal cycle length so as to minimize the total cost. Numerical example with various special cases have been discussed which signifies the effect of preservation technology investment in controlling the loss due to deterioration. Finally, the effect of key model features on the optimal solution is studied through sensitivity analysis which provides some important managerial implications.


2020 ◽  
Vol 139 ◽  
pp. 105557 ◽  
Author(s):  
Leopoldo Eduardo Cárdenas-Barrón ◽  
Ali Akbar Shaikh ◽  
Sunil Tiwari ◽  
Gerardo Treviño-Garza

2014 ◽  
Vol 24 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Vinod Mishra

In this paper, we develop an inventory model for non-instantaneous deteriorating items under the consideration of the facts: deterioration rate can be controlled by using the preservation technology (PT) during deteriorating period, and holding cost and demand rate both are linear function of time, which was treated as constant in most of the deteriorating inventory models. So in this paper, we developed a deterministic inventory model for non-instantaneous deteriorating items in which both demand rate and holding cost are a linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged. The model is solved analytically by minimizing the total cost of the inventory system. The model can be applied to optimizing the total inventory cost of non-instantaneous deteriorating items inventory for the business enterprises, where the preservation technology is used to control the deterioration rate, and demand & holding cost both are a linear function of time.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shuhua Zhang ◽  
Longzhou Cao ◽  
Zuliang Lu

<p style='text-indent:20px;'>The main purpose of this paper is to investigate the retailer's strategy in selecting the order-up-to level, the reorder point and the preservation technology investment for deteriorating items, aiming to maximize his total profit per unit time. We formulate the problem into a mathematical model that takes into account stock-dependent demand rate, stock-dependent holding cost. The terminal conditions are relaxed to allow that the reorder point can be one of the following two cases: (1) <inline-formula><tex-math id="M1">\begin{document}$ N\leq0 $\end{document}</tex-math></inline-formula>, i.e., the reorder point may be negative or zero. When the reorder point is negative, the shortage is allowed and partial backlogged. (2) <inline-formula><tex-math id="M2">\begin{document}$ N\geq0 $\end{document}</tex-math></inline-formula>, i.e., the reorder point may be without shortage or zero. We prove the existence and uniqueness of the optimal order-up-to level, the reorder point and the preservation technology investment under any given two of them for both the two cases. We then present an algorithm to search for decision variables such that the total profit per unit time is maximized. Finally, numerical examples, comparisons in performance and sensitivity analysis are carried out to examine the results obtained. On the basis of the above results, some useful managerial insights are revealed.</p>


2021 ◽  
Vol 13 (23) ◽  
pp. 13493
Author(s):  
Ali Akbar Shaikh ◽  
Leopoldo Eduardo Cárdenas-Barrón ◽  
Amalesh Kumar Manna ◽  
Armando Céspedes-Mota ◽  
Gerardo Treviño-Garza

In present real life situations, the stock and expiration date directly impact on the demand of an item. In this context, this research work develops an inventory model for stock and expiration rate-dependent demand under a two-level trade credit policy. Specifically, the following three situations are studied: (i) trade credit policy without zero ending inventory; (ii) trade credit policy with zero ending inventory; (iii) trade credit policy with partial backlogged shortages. The proposed inventory model is formulated as a non-linear constrained optimization problem. Some theoretical results are derived, and an algorithm is stated in order to solve the proposed inventory model. The main objective of the inventory model is to determine the optimal cycle length, the optimal ending inventory level, and the optimal number of units displayed which maximize the total profit. Some numerical examples are solved. Finally, a sensitivity analysis is done with the aim to see the impacts of a variation of the input parameters on the decision variables and the total profit.


Sign in / Sign up

Export Citation Format

Share Document