scholarly journals An Efficient Approach to Point-Counting on Elliptic Curves from a Prominent Family over the Prime Field Fp

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1431
Author(s):  
Yuri Borissov ◽  
Miroslav Markov

Here, we elaborate an approach for determining the number of points on elliptic curves from the family Ep={Ea:y2=x3+a(modp),a≠0}, where p is a prime number >3. The essence of this approach consists in combining the well-known Hasse bound with an explicit formula for the quantities of interest-reduced modulo p. It allows to advance an efficient technique to compute the six cardinalities associated with the family Ep, for p≡1(mod3), whose complexity is O˜(log2p), thus improving the best-known algorithmic solution with almost an order of magnitude.

2010 ◽  
Vol 62 (5) ◽  
pp. 1155-1181 ◽  
Author(s):  
Matthew P. Young

AbstractWe make conjectures on the moments of the central values of the family of all elliptic curves and on themoments of the first derivative of the central values of a large family of positive rank curves. In both cases the order of magnitude is the same as that of the moments of the central values of an orthogonal family of L-functions. Notably, we predict that the critical values of all rank 1 elliptic curves is logarithmically larger than the rank 1 curves in the positive rank family.Furthermore, as arithmetical applications, we make a conjecture on the distribution of ap's amongst all rank 2 elliptic curves and show how the Riemann hypothesis can be deduced from sufficient knowledge of the first moment of the positive rank family (based on an idea of Iwaniec).


2015 ◽  
Vol 11 (06) ◽  
pp. 1751-1790 ◽  
Author(s):  
James Parks

Silverman and Stange defined the notion of an aliquot cycle of length L for a fixed elliptic curve E/ℚ, and conjectured an order of magnitude for the function that counts such aliquot cycles. We show that the conjectured upper bound holds for the number of aliquot cycles on average over the family of all elliptic curves with short bounds on the size of the parameters in the family.


Author(s):  
JAMES PARKS

AbstractAmicable pairs for a fixed elliptic curve defined over ℚ were first considered by Silverman and Stange where they conjectured an order of magnitude for the function that counts such amicable pairs. This was later refined by Jones to give a precise asymptotic constant. The author previously proved an upper bound for the average number of amicable pairs over the family of all elliptic curves. In this paper we improve this result to an asymptotic for the average number of amicable pairs for a family of elliptic curves.


2018 ◽  
Vol 51 ◽  
pp. 168-182 ◽  
Author(s):  
Alessandro Amadori ◽  
Federico Pintore ◽  
Massimiliano Sala

2005 ◽  
Vol 117 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Jörn Steuding ◽  
Annegret Weng

2021 ◽  
Vol 25 (2(36)) ◽  
pp. 26-39
Author(s):  
P. Fugelo ◽  
S. Varbanets

Let $p$ be a prime number, $d\in\mathds{N}$, $\left(\frac{-d}{p}\right)=-1$, $m>2$, and let $E_m$ denotes the set of of residue classes modulo $p^m$ over the ring of Gaussian integers in imaginary quadratic field $\mathds{Q}(\sqrt{-d})$ with norms which are congruented with 1 modulo $p^m$. In present paper we establish the polynomial representations for real and imagimary parts of the powers of generating element $u+iv\sqrt{d}$ of the cyclic group $E_m$. These representations permit to deduce the ``rooted bounds'' for the exponential sum in Turan-Erd\"{o}s-Koksma inequality. The new family of the sequences of pseudo-random numbers that passes the serial test on pseudorandomness was being buit.


1984 ◽  
Vol 96 ◽  
pp. 139-165 ◽  
Author(s):  
Fumiyuki Momose

Let p be a prime number and k an algebraic number field of finite degree d. Manin [14] showed that there exists an integer n = n(k,p) (≧0) which satisfies the condition


Author(s):  
Robert Schneider ◽  
Andrew V. Sills

We examine “partition zeta functions” analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties — those summed over partitions of fixed length — which yields complete information about analytic continuation, poles and trivial roots of the zeta functions in the family. Then we present a combinatorial proof of the explicit formula, which shows it to be a zeta function analog of MacMahon’s partial fraction decomposition of the generating function for partitions of fixed length.


Sign in / Sign up

Export Citation Format

Share Document