scholarly journals Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2103
Author(s):  
Bingnan Jiang ◽  
Yuanheng Wang ◽  
Jen-Chih Yao

In this paper, we construct two multi-step inertial regularized methods for hierarchical inequality problems involving generalized Lipschitzian and hemicontinuous mappings in Hilbert spaces. Then we present two strong convergence theorems and some numerical experiments to show the effectiveness and feasibility of our new iterative methods.

Author(s):  
Zhongbing Xie ◽  
Gang Cai ◽  
Xiaoxiao Li ◽  
Qiao-Li Dong

Abstract The purpose of this paper is to study a new Tseng’s extragradient method with two different stepsize rules for solving pseudomonotone variational inequalities in real Hilbert spaces. We prove a strong convergence theorem of the proposed algorithm under some suitable conditions imposed on the parameters. Moreover, we also give some numerical experiments to demonstrate the performance of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document