scholarly journals Adaptive Secure Control for Leader-Follower Formation of Nonholonomic Mobile Robots in the Presence of Uncertainty and Deception Attacks

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2190
Author(s):  
Bong-Seok Park ◽  
Sung-Jin Yoo

This paper addresses an adaptive secure control problem for the leader-follower formation of nonholonomic mobile robots in the presence of uncertainty and deception attacks. It is assumed that the false data of the leader robot’s information attacked by the adversary is transmitted to the follower robot through the network, and the dynamic model of each robot has uncertainty, such as unknown nonlinearity and external disturbances. A robust, adaptive secure control strategy compensating for false data and uncertainty is developed to accomplish the desired formation of nonholonomic mobile robots. An adaptive compensation mechanism is derived to remove the effects of time-varying attack signals and system uncertainties in the proposed control scheme. Although unknown deception attacks are injected to the leader’s velocities and the model nonlinearities of robots are unknown, the boundedness and convergence of formation tracking errors of the proposed adaptive control system are analyzed in the Lyapunov sense. The validity of the proposed scheme is verified via simulation results.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Shenglin Wen ◽  
Ye Yan

This paper studies the robust adaptive fuzzy control design problem for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear systems in the presence of actuator amplitude and rate saturation. In the control scheme, fuzzy logic systems are used to approximate unknown nonlinear systems. To compensate the effect of input saturations, an auxiliary system is constructed and the actuator saturations then can be augmented into the controller. The modified tracking error is introduced and used in fuzzy parameter update laws. Furthermore, in order to deal with fuzzy approximation errors for unknown nonlinear systems and external disturbances, a robust compensation control is designed. It is proved that the closed-loop system obtainsH∞tracking performance through Lyapunov analysis. Steady and transient modified tracking errors are analyzed and the bound of modified tracking errors can be adjusted by tuning certain design parameters. The proposed control scheme is applicable to uncertain nonlinear systems not only with actuator amplitude saturation, but also with actuator amplitude and rate saturation. Detailed simulation results of a rigid body satellite attitude control system in the presence of parametric uncertainties, external disturbances, and control input constraints have been presented to illustrate the effectiveness of the proposed control scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaoxia Peng ◽  
Shichun Yang ◽  
Guoguang Wen ◽  
Ahmed Rahmani

This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.


Sign in / Sign up

Export Citation Format

Share Document