scholarly journals Soft Frames in Soft Hilbert Spaces

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2249
Author(s):  
Osmin Ferrer ◽  
Arley Sierra ◽  
José Sanabria

In this paper, we use soft linear operators to introduce the notion of discrete frames on soft Hilbert spaces, which extends the classical notion of frames on Hilbert spaces to the context of algebraic structures on soft sets. Among other results, we show that the frame operator associated to a soft discrete frame is bounded, self-adjoint, invertible and with a bounded inverse. Furthermore, we prove that every element in a soft Hilbert space satisfies the frame decomposition theorem. This theoretical framework is potentially applicable in signal processing because the frame coefficients serve to model the data packets to be transmitted in communication networks.

1981 ◽  
Vol 33 (5) ◽  
pp. 1205-1231 ◽  
Author(s):  
Lawrence A. Fialkow

Let and denote infinite dimensional Hilbert spaces and let denote the space of all bounded linear operators from to . For A in and B in , let τAB denote the operator on defined by τAB(X) = AX – XB. The purpose of this note is to characterize the semi-Fredholm domain of τAB (Corollary 3.16). Section 3 also contains formulas for ind(τAB – λ). These results depend in part on a decomposition theorem for Hilbert space operators corresponding to certain “singular points” of the semi-Fredholm domain (Theorem 2.2). Section 4 contains a particularly simple formula for ind(τAB – λ) (in terms of spectral and algebraic invariants of A and B) for the case when τAB – λ is Fredholm (Theorem 4.2). This result is used to prove that (τBA) = –ind(τAB) (Corollary 4.3). We also prove that when A and B are bi-quasi-triangular, then the semi-Fredholm domain of τAB contains no points corresponding to nonzero indices.


1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.


2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


2021 ◽  
Vol 54 (1) ◽  
pp. 318-325
Author(s):  
Nadia Mesbah ◽  
Hadia Messaoudene ◽  
Asma Alharbi

Abstract Let ℋ {\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ ( ℋ ) {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ {\mathcal{ {\mathcal H} }} . In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) \left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥ A X − X B − I ∥ ≥ 1 , for all X ∈ ℬ ( ℋ ) . \parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.


Author(s):  
W. D. Collins

SynopsisBy using a Hilbert space decomposition theorem for two polar cones it is shown that the method of the hypercircle can be extended to determine solutions to best approximation problems involving unilateral constraints. The method is applied to abstract boundary value problems for linear operators involving such constraints.


2003 ◽  
Vol 01 (01) ◽  
pp. 17-41 ◽  
Author(s):  
STEVE SMALE ◽  
DING-XUAN ZHOU

Let B be a Banach space and (ℋ,‖·‖ℋ) be a dense, imbedded subspace. For a ∈ B, its distance to the ball of ℋ with radius R (denoted as I(a, R)) tends to zero when R tends to infinity. We are interested in the rate of this convergence. This approximation problem arose from the study of learning theory, where B is the L2 space and ℋ is a reproducing kernel Hilbert space. The class of elements having I(a, R) = O(R-r) with r > 0 is an interpolation space of the couple (B, ℋ). The rate of convergence can often be realized by linear operators. In particular, this is the case when ℋ is the range of a compact, symmetric, and strictly positive definite linear operator on a separable Hilbert space B. For the kernel approximation studied in Learning Theory, the rate depends on the regularity of the kernel function. This yields error estimates for the approximation by reproducing kernel Hilbert spaces. When the kernel is smooth, the convergence is slow and a logarithmic convergence rate is presented for analytic kernels in this paper. The purpose of our results is to provide some theoretical estimates, including the constants, for the approximation error required for the learning theory.


1982 ◽  
Vol 23 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Ernst Albrecht

Let H be a complex Hilbert space and denote by B(H) the Banach algebra of all bounded linear operators on H. In [5; 6] J. Ph. Labrousse proved that every operator S∈B(H) which is spectral in the sense of N. Dunford (see [3]) is similar to a T∈B(H) with the following propertyConversely, he showed that given an operator S∈B(H) such that its essential spectrum (in the sense of [5; 6]) consists of at most one point and such that S is similar to a T∈B(H) with the property (1), then S is a spectral operator. This led him to the conjecture that an operator S∈B(H) is spectral if and only if it is similar to a T∈B(H) with property (1). The purpose of this note is to prove this conjecture in the case of operators which are decomposable in the sense of C. Foias (see [2]).


1968 ◽  
Vol 20 ◽  
pp. 1353-1361 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

In this note the Hilbert spaces under consideration are complex, and the operators referred to are bounded, linear operators. If is a Hilbert space, then the algebra of all operators on is denoted by .It is known (1) that if is any Hilbert space, then the class of commutators on , i.e., the class of all operators that can be written in the form PQ — QP for some , can be exactly described. A similar problem is that of characterizing all operators on that can be written in the form for some .


1990 ◽  
Vol 42 (5) ◽  
pp. 890-901 ◽  
Author(s):  
Jorge A. León

In this paper we will study the Fubini theorem for stochastic integrals with respect to semimartingales in Hilbert space.Let (Ω, , P) he a probability space, (X, , μ) a measure space, H and G two Hilbert spaces, L(H, G) the space of bounded linear operators from H into G, Z an H-valued semimartingale relative to a given filtration, and φ: X × R+ × Ω → L(H, G) a function such that for each t ∈ R+ the iterated integrals are well-defined (the integrals with respect to μ are Bochner integrals). It is often necessary to have sufficient conditions for the process Y1 to be a version of the process Y2 (e.g. [1], proof of Theorem 2.11).


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Nashat Faried ◽  
Mohamed S. S. Ali ◽  
Hanan H. Sakr

Due to the difficulty of representing problem parameters fuzziness using the soft set theory, the fuzzy soft set is regarded to be more general and flexible than using the soft set. In this paper, we define the fuzzy soft linear operator T~ in the fuzzy soft Hilbert space H~ based on the definition of the fuzzy soft inner product space U~,·,·~ in terms of the fuzzy soft vector v~fGe modified in our work. Moreover, it is shown that ℂnA, ℝnA and ℓ2A are suitable examples of fuzzy soft Hilbert spaces and also some related examples, properties and results of fuzzy soft linear operators are introduced with proofs. In addition, we present the definition of the fuzzy soft orthogonal family and the fuzzy soft orthonormal family and introduce examples satisfying them. Furthermore, the fuzzy soft resolvent set, the fuzzy soft spectral radius, the fuzzy soft spectrum with its different types of fuzzy soft linear operators and the relations between those types are introduced. Moreover, the fuzzy soft right shift operator and the fuzzy soft left shift operator are defined with an example of each type on ℓ2A. In addition, it is proved, on ℓ2A, that the fuzzy soft point spectrum of fuzzy soft right shift operator has no fuzzy soft eigenvalues, the fuzzy soft residual spectrum of fuzzy soft right shift operator is equal to the fuzzy soft comparison spectrum of it and the fuzzy soft point spectrum of fuzzy soft left shift operator is the fuzzy soft open disk λ~<~1~. Finally, it is shown that the fuzzy soft Hilbert space is fuzzy soft self-dual in this generalized setting.


Sign in / Sign up

Export Citation Format

Share Document