scholarly journals In Silico Identification and Experimental Validation of (−)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator

Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 110 ◽  
Author(s):  
Enrico D’Aniello ◽  
Fabio Iannotti ◽  
Lauren Falkenberg ◽  
Andrea Martella ◽  
Alessandra Gentile ◽  
...  

The nuclear receptors (NRs) RARα, RXRα, PPARα, and PPARγ represent promising pharmacological targets for the treatment of neurodegenerative diseases. In the search for molecules able to simultaneously target all the above-mentioned NRs, we screened an in-house developed molecular database using a ligand-based approach, identifying (−)-Muqubilin (Muq), a cyclic peroxide norterpene from a marine sponge, as a potential hit. The ability of this compound to stably and effectively bind these NRs was assessed by molecular docking and molecular dynamics simulations. Muq recapitulated all the main interactions of a canonical full agonist for RXRα and both PPARα and PPARγ, whereas the binding mode toward RARα showed peculiar features potentially impairing its activity as full agonist. Luciferase assays confirmed that Muq acts as a full agonist for RXRα, PPARα, and PPARγ with an activity in the low- to sub-micromolar range. On the other hand, in the case of RAR, a very weak agonist activity was observed in the micromolar range. Quite surprisingly, we found that Muq is a positive allosteric modulator for RARα, as both luciferase assays and in vivo analysis using a zebrafish transgenic retinoic acid (RA) reporter line showed that co-administration of Muq with RA produced a potent synergistic enhancement of RARα activation and RA signaling.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 873
Author(s):  
Raphael J. Eberle ◽  
Danilo S. Olivier ◽  
Marcos S. Amaral ◽  
Ian Gering ◽  
Dieter Willbold ◽  
...  

Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.


2009 ◽  
Vol 78 (7) ◽  
pp. 913 ◽  
Author(s):  
James N.C. Kew ◽  
Selina Mok ◽  
Annette Weil ◽  
Caterina Virginio ◽  
Laura Castelletti ◽  
...  

2016 ◽  
Vol 791 ◽  
pp. 115-123 ◽  
Author(s):  
Alessandra Porcu ◽  
Carla Lobina ◽  
Daniela Giunta ◽  
Maurizio Solinas ◽  
Claudia Mugnaini ◽  
...  

2021 ◽  
Vol 1863 (1) ◽  
pp. 183492
Author(s):  
Kaushiki S. Prabhudesai ◽  
Muthu Sankar Aathi ◽  
Vikas Dighe ◽  
Susan Idicula-Thomas

2017 ◽  
Vol 33 (8) ◽  
pp. 582-590 ◽  
Author(s):  
Elizabeth A. Cairns ◽  
Anna-Maria Szczesniak ◽  
Alex J. Straiker ◽  
Pushkar M. Kulkarni ◽  
Roger G. Pertwee ◽  
...  

2017 ◽  
Vol 13 (7S_Part_26) ◽  
pp. P1270-P1270
Author(s):  
Sylvie Bretin ◽  
Albert Giralt ◽  
María Ángeles Gómez-Climent ◽  
Rafael Alcalá ◽  
Jose Maria Delgado-Garcia ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5903
Author(s):  
Prema L. Mallipeddi ◽  
Yongyou Zhang ◽  
Hongyun Li ◽  
Sanford D. Markowitz ◽  
Bruce Posner

We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.


Sign in / Sign up

Export Citation Format

Share Document