scholarly journals Modelling the Molecular Permeation through Mixed-Matrix Membranes Incorporating Tubular Fillers

Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Ali Zamani ◽  
F. Handan Tezel ◽  
Jules Thibault

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson’s upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 422
Author(s):  
Haoyu Wu ◽  
Maryam Zamanian ◽  
Boguslaw Kruczek ◽  
Jules Thibault

In the packaging industry, the barrier property of packaging materials is of paramount importance. The enhancement of barrier properties of materials can be achieved by adding impermeable nanoparticles into thin polymeric films, known as mixed-matrix membranes (MMMs). Three-dimensional numerical simulations were performed to study the barrier property of these MMMs and to estimate the effective membrane gas permeability. Results show that horizontally-aligned thin cuboid nanoparticles offer far superior barrier properties than spherical nanoparticles for an identical solid volume fraction. Maxwell’s model predicts very well the relative permeability of spherical and cubic nanoparticles over a wide range of the solid volume fraction. However, Maxwell’s model shows an increasingly poor prediction of the relative permeability of MMM as the aspect ratio of cuboid nanoparticles tends to zero or infinity. An artificial neural network (ANN) model was developed successfully to predict the relative permeability of MMMs as a function of the relative thickness and the relative projected area of the embedded nanoparticles. However, since an ANN model does not provide an explicit form of the relation of the relative permeability with the physical characteristics of the MMM, a new model based on multivariable regression analysis is introduced to represent the relative permeability in a MMM with impermeable cuboid nanoparticles. The new model possesses a simple explicit form and can predict, very well, the relative permeability over an extensive range of the solid volume fraction and aspect ratio, compared with many existing models.


2018 ◽  
Vol 6 (44) ◽  
pp. 21961-21968 ◽  
Author(s):  
Chinnadurai Satheeshkumar ◽  
Hyun Jung Yu ◽  
Hyojin Park ◽  
Min Kim ◽  
Jong Suk Lee ◽  
...  

A thiol–ene ‘click’ photopolymerization methodology for the covalent connection between vinyl-functionalized metal–organic frameworks (MOFs) and the polymer matrix.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 193
Author(s):  
Guang Yang ◽  
Zongli Xie ◽  
Marlene Cran ◽  
Chunrui Wu ◽  
Stephen Gray

Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic–inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure–performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.


2011 ◽  
Vol 373 (1-2) ◽  
pp. 152-159 ◽  
Author(s):  
Biruh Shimekit ◽  
Hilmi Mukhtar ◽  
Thanapalan Murugesan

2016 ◽  
Vol 4 (37) ◽  
pp. 14334-14341 ◽  
Author(s):  
Javier Sánchez-Laínez ◽  
Beatriz Zornoza ◽  
Carlos Téllez ◽  
Joaquín Coronas

A study of the chemical filler–polymer interactions of micro- and nano-sized ZIF-11 in PBI polymer matrix and H2/CO2 separation performance.


2014 ◽  
Vol 625 ◽  
pp. 653-656 ◽  
Author(s):  
Biruh Shimekit ◽  
Azmi Mohd Shariff ◽  
Hilmi Mukhtar ◽  
Mohamad Azmi Bustam ◽  
Ali E.I. Elkhalifah ◽  
...  

Development of novel mixed matrix membranes (MMMs) has become frontier candidates for improving the upper bound trade-off curve between permeability and selectivity of gases for industrial polymeric membranes. However, fabrication of ideal MMMs is practically challenging as the dispersion of inorganic phase into the polymer may produce polymeric-inorganic interfacial defects at the vicinity of the polymer matrix. For instance, the inorganic phase may cause interfacial void, polymer chain rigidification or partial pore blockage on the overall MMMs. Since there are only few studies that specifically focus on the issues of the interfacial morphology of MMMs, therefore, the present study provides brief description of the aforementioned interfacial (non-ideal) defects of MMMs and summarizes the techniques used to repair the interfacial defects for enhanced gas separation in MMMs.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2019 ◽  
Vol 591 ◽  
pp. 117348 ◽  
Author(s):  
Roshni L. Thankamony ◽  
Xiang Li ◽  
Swapan K. Das ◽  
Mayur M. Ostwal ◽  
Zhiping Lai

Sign in / Sign up

Export Citation Format

Share Document