pore blockage
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 32)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Khizar Hayat ◽  
Lourdes F. Vega ◽  
Ahmed Alhajaj

Abstract The non-aqueous Li-air battery is considered to be a promising energy source for electric-vehicles owing to its ultrahigh theoretical power density. However, its commercialization is limited by the attained lower energy density value, which is mainly due to pore blockage and passivation which requires a more strategic design of the cathode. In this work, we have developed and validated a detailed one-dimensional continuum model of Li-Air battery that helps in examining the potential of hierarchical cathodes in guiding and enhancing the efficiency of ions transport and discharge product formation inside microstructures. The obtained results reveal the importance of reducing the tortuosity (shorten the path of oxygen transport) and increasing porosity at the airside of the hierarchical cathode, which improved discharge capacity at approximately 20.9 and 56%, respectively. The improved capacity is due to enhanced effective oxygen transport, impregnation of electrolyte, alignment of pores, and formation of permeable and low crystalline aggregates of Li2O2. Hence, strategies considering these insights can help in the design and fabrication of non-aqueous Li-air batteries with enhanced power density and capacity.


Author(s):  
Qiming Huang ◽  
Jun Li ◽  
Shimin Liu ◽  
Gang Wang

AbstractHydraulic fracturing is an effective technology for coal reservoir stimulation. After fracturing operation and flowback, a fraction of fracturing fluid will be essentially remained in the formation which ultimately damages the flowability of the formation. In this study, we quantified the gel-based fracturing fluid induced damages on gas sorption for Illinois coal in US. We conducted the high-pressure methane and CO2 sorption experiments to investigate the sorption damage due to the gel residue. The infrared spectroscopy tests were used to analyze the evolution of the functional group of the coal during fracturing fluid treatment. The results show that there is no significant chemical reaction between the fracturing fluid and coal, and the damage of sorption is attributed to the physical blockage and interactions. As the concentration of fracturing fluid increases, the density of residues on the coal surface increases and the adhesion film becomes progressively denser. The adhesion film on coal can apparently reduce the number of adsorption sites for gas and lead to a decrease of gas sorption capacity. In addition, the gel residue can decrease the interconnectivity of pore structure of coal which can also limit the sorption capacity by isolating the gas from the potential sorption sites. For the low concentration of fracturing fluid, the Langmuir volume was reduced to less than one-half of that of raw coal. After the fracturing fluid invades, the desorption hysteresis of methane and CO2 in coal was found to be amplified. The impact on the methane desorption hysteresis is significantly higher than CO2 does. The reason for the increasing of hysteresis may be that the adsorption swelling caused by the residue adhered on the pore edge, or the pore blockage caused by the residue invasion under high gas pressure. The results of this study quantitatively confirm the fracturing fluid induced gas sorption damage on coal and provide a baseline assessment for coal fracturing fluid formulation and technology.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 709
Author(s):  
Asmat Ullah ◽  
Kamran Alam ◽  
Saad Ullah Khan ◽  
Victor M. Starov

A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Khalil Sidawi ◽  
Jordan Bouchard ◽  
Marco Marengo ◽  
Sanjeev Chandra
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5267
Author(s):  
Wei Liu ◽  
Yuxi Zhang ◽  
Shui Wang ◽  
Lisen Bai ◽  
Yanhui Deng ◽  
...  

Polymeric adsorbents with different properties were synthesized via suspension polymerization. Equilibrium and kinetics experiments were then performed to verify the adsorption capacities of the resins for molecules of various sizes. The adsorption of small molecules reached equilibrium more quickly than the adsorption of large molecules. Furthermore, the resins with small pores are easy to lower their adsorption capacities for large molecules because of the pore blockage effect. After amination, the specific surface areas of the resins decreased. The average pore diameter decreased when the resin was modified with either primary or tertiary amines, but the pore diameter increased when the resin was modified with secondary amines. The phenol adsorption capacities of the amine-modified resins were reduced because of the decreased specific area. The amine-modified resins could more efficiently adsorb reactive brilliant blue 4 owing to the presence of polar functional groups.


Author(s):  
Asmat Ullah ◽  
Kalam Alam ◽  
Saad Ullah Khan ◽  
Victor M. Starov

A new method is proposed to increase rejection in microfiltration by applying membrane oscillation using a new type of microfiltration membranes with slotted pores. The oscillations applied to the membrane surface result in reducing membrane fouling and increasing separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in appearance of the lift velocity, which moves oil particles away from the membrane. The latter results in both reducing membrane fouling and increasing oil droplets rejection. This developed model was supported by the experimental results for oil water separation in produced water treatment. It was proven that oil droplet concentration reduced notably in the permeate due to the membrane oscillation and that applied shear rate caused by the membrane oscillation is also reduce pore blockage. New generation of microfiltration membranes with slotted pores was used in the experiments.


Author(s):  
Qianming Man ◽  
Pijun Gong ◽  
Yifei Jiang ◽  
Yulu Zhang ◽  
Ziqiang Chen ◽  
...  

The poisoning effect of KNO3, NaNO3, and Ca(NO3)2 on CeZrTiAl catalyst for selective catalytic reduction of NO with NH3 was investigated. It was found that the activity deactivation rate follows K> Na > Ca. SEM and BET showed that the accumulation of catalysts was severe after poisoning, and the nanosheet γ-Al2O3 skeleton structure disappeared due to alkali coating. The decrease of the specific surface area is accompanied by pore blockage, making the catalyst unable to expose rich reaction sites. In addition, the fewer surface Ce3+ and chemisorbed oxygen on the surface of the poisoned catalyst weaken the cycle between Ce3+ and Ce4+, resulting in bad redox performance. Thus, the failure to realize the efficient oxidation of NO to NO2. Another critical reason for catalyst poisoning failure is that the decrease of surface acid sites seriously affects the adsorption and activation of NH3 and NOx on the catalyst surface.


Author(s):  
Mohana Mukherjee ◽  
Rajdip Bandyopadhyaya

Abstract We present a new method for impregnation of silver nanoparticles (Ag NPs) at high loading on PES membrane's external surface, simultaneously retaining native membrane's porosity – to achieve a high water permeate flux without biofouling. This was possible by PES membrane's surface modification with acrylic acid (AA), finally leading to AA-Ag-PES membrane. AA-Ag-PES had a high (9.04%) Ag-NP loading selectively on membrane surface, as discrete, smaller (mean size: 20 nm) NPs. In nonfunctionalized Ag-PES, aggregated (mean size: 70 nm) NPs, with lower Ag loading (0.73 wt.%) was obtained, with NP being present both on membrane surface and inside pores. Consequently, AA-Ag-PES could maintain similar water permeability and porosity (10,153.05 Lm−2 h−1bar−1 and 69.98%, respectively), as in native PES (11,368.74 Lm−2 h−1bar−1 and 68.86%, respectively); whereas both parameters dropped significantly for Ag-PES (4,869.66 Lm−2 h−1bar−1 and 49.02%, respectively). AA-Ag-PES also showed least flux reduction (7.7%) due to its anti-biofouling property and high flux recovery after usage and cleaning, compared to native PES and Ag-PES membrane's much higher flux reduction (54.29% and 36.7%, respectively). Hence, discrete NP impregnation, avoiding pore blockage, is key for achieving high water flux and anti-biofouling properties (in AA-Ag-PES), compared to non-functionalized Ag-PES, due to aggregated Ag-NPs inside its pores.


2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1178
Author(s):  
Jenyuk Lohwacharin ◽  
Thitiwut Maliwan ◽  
Hideki Osawa ◽  
Satoshi Takizawa

The presence of multiple contaminant species in surface waters makes surface water treatment difficult to accomplish through a single process. Herein, we evaluated the ability of an integrated adsorption/ultrafiltration (UF) membrane filtration system to simultaneously remove phosphates and dissolved organic matter (DOM). When bare powdered activated carbon (PAC) and PAC impregnated with amorphous ferrihydrite (FHPAC) adsorbents were compared, FHPAC showed a greater adsorption rate and capacity for phosphate. FHPAC had a phosphate adsorption capacity of 2.32 mg PO43−/g FHPAC, even when DOM was present as a competing adsorbate. In a lab-scale hybrid FHPAC-UF system (i.e. integrated adsorption by FHPAC with UF membrane filtration), irreversible membrane fouling was ca. three times lower than that in a PAC-UF system. When membrane fouling in the PAC-UF system was described with pore blockage models, we found that the main cause of fouling was bacterial deposition on the membrane surface. CLSM analysis determined that the chemical composition of foulants in the PAC-UF system included higher proportions of proteins, nucleic acids, and alpha-polysaccharides than that in the FHPAC-UF system. Overall, FHPAC’s ability to undergo ligand exchanges with DOM helped to reduce the nutrients and bacteria that cause biofouling to accumulate on the membrane surface.


Sign in / Sign up

Export Citation Format

Share Document