scholarly journals The Effect of the Oleophobicity Deterioration of a Membrane Surface on Its Rejection Capacity: A Computational Fluid Dynamics Study

Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 253
Author(s):  
Amgad Salama ◽  
Adel Alyan ◽  
Mohamed El Amin ◽  
Shuyu Sun ◽  
Tao Zhang ◽  
...  

In this work, the effects of the deteriorating affinity-related properties of membranes due to leaching and erosion on their rejection capacity were studied via computational fluid dynamics (CFD). The function of affinity-enhancing agents is to modify the wettability state of the surface of a membrane for dispersed droplets. The wettability conditions can be identified by the contact angle a droplet makes with the surface of the membrane upon pinning. For the filtration of fluid emulsions, it is generally required that the surface of the membrane is nonwetting for the dispersed droplets such that the interfaces that are formed at the pore openings provide the membrane with a criterion for the rejection of dispersals. Since materials that make up the membrane do not necessarily possess the required affinity, it is customary to change it by adding affinity-enhancing agents to the base material forming the membrane. The bonding and stability of these materials can be compromised during the lifespan of a membrane due to leaching and erosion (in crossflow filtration), leading to a deterioration of the rejection capacity of the membrane. In order to investigate how a decrease in the contact angle can lead to the permeation of droplets that would otherwise get rejected, a CFD study was conducted. In the CFD study, a droplet was released in a crossflow field that involved a pore opening and the contact angle was considered to decrease with time as a consequence of the leaching of affinity-enhancing agents. The CFD analysis revealed that the decrease in the contact angle resulted in the droplet spreading over the surface more. Furthermore, the interface that was formed at the entrance of the pore opening flattened as the contact angle decreased, leading the interface to advance more inside the pore. The droplet continued to pass over the pore opening until the contact angle reached a certain value, at which point, the droplet became pinned at the pore opening.

2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


2019 ◽  
Vol 9 (3) ◽  
pp. 566 ◽  
Author(s):  
Shuang Han ◽  
Runhua Yang ◽  
Chaobo Li ◽  
Lixin Yang

Wettability is an important property of solid surfaces and is widely used in many industries. In this work, seven silicon microstructure surfaces were made by plasma immersion ion implantation (PIII) technology. The experimental contact angles and theoretical contact angles of various surfaces were compared, which indicated that the classical theory had great limitations in predicting the static contact angles of complex structures. A parameterized microstructure surface was established by computational fluid dynamics (CFD) with a volume-of-fluid (VOF) model to analyze the reasons for the differences between experimental and theoretical contact angles. Comparing the results of experiments and simulations, it was found that the VOF model can simulate the contact angle of these surfaces very well. The geometrical models of the different microstructures were simplified, and waveforms of the surfaces were obtained.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 555
Author(s):  
Sebastian Osterroth ◽  
Christian Neumann ◽  
Michael Weiß ◽  
Uwe Maurieschat ◽  
Alexandra Latnikova ◽  
...  

In this study, the attachment of microcapsules on the membrane surface and its influence on the flow field for a cross-flow membrane setup are investigated. The microcapsules were placed on the top layer of the membrane. The overall purpose of this modification was the prevention of membrane biofouling. Therefore, in a first step, the influence of such a combination on the fluid flow was investigated using computational fluid dynamics (CFD). Here, different properties, which are discussed as indicators for biofouling in the literature, were considered. In parallel, different fixation strategies for the microcapsules were experimentally tested. Two different methods to add the microcapsules were identified and further investigated. In the first method, the microcapsules are glued to the membrane surface, whereas in the second method, the microcapsules are added during the membrane fabrication. The different membrane modifications were studied and compared using CFD. Therefore, virtual geometries mimicking the real ones were created. An idealized virtual geometry was added to the comparison. Results from the simulation were fed back to the experiments to optimize the combined membrane. For the presented setup, it is shown that the glued configuration provides a lower transmembrane pressure than the configuration where microcapsules are added during fabrication.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


Sign in / Sign up

Export Citation Format

Share Document