scholarly journals Effects of Polymer Matrices and Carbon Nanotubes on the Generation of Electric Energy in a Microbial Fuel Cell

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 99 ◽  
Author(s):  
Yulia Plekhanova ◽  
Sergei Tarasov ◽  
Vladimir Kolesov ◽  
Iren Kuznetsova ◽  
Maria Signore ◽  
...  

The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized Gluconobacter oxydans VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or N-vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed pyrroloquinoline quinone (PQQ)-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. Microbial fuel cells based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm2) at a minimal resistance (1111 Ohm cm2). Modification of the anode by multiwalled carbon nanotubes (MWCNT) led to a slight decrease of internal resistance (down to 1078 Ohm cm2) and to an increase of generated power density up to 10.6 μW/cm2. We explored the possibility of accumulating electric energy from an MFC on a 6800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a Bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.

Author(s):  
Yulia Plekhanova ◽  
Sergey Tarasov ◽  
Vladimir Kolesov ◽  
Iren Kuznetsova ◽  
Maria Signore ◽  
...  

The anode of a microbial fuel cell (MFC) was formed on a graphite electrode and immobilized Gluconobacter oxydans VKM-1280 bacterial cells. Immobilization was performed in chitosan, poly(vinyl alcohol) or N-vinylpyrrolidone-modified poly(vinyl alcohol). Ethanol was used as substrate. The anode was modified using multiwalled carbon nanotubes. The aim of the modification was to create a conductive network between cell lipid membranes, containing exposed PQQ-dependent alcoholdehydrogenases, and the electrode to facilitate electron transfer in the system. The bioelectrochemical characteristics of modified anodes at various cell/polymer ratios were assessed via current density, power density, polarization curves and impedance spectres. MFCs based on chitosan at a matrix/cell volume ratio of 5:1 produced maximal power characteristics of the system (8.3 μW/cm2) at a minimal resistance (1111 Ohm cm2). Modification of the anode by multiwalled carbon nanotubes led to a slight decrease of internal resistance (down to 1078 Ohm cm2) and to an increase of generated power density up to 10.6 μW/cm2. We explored the possibility of accumulating electric energy from an MFC on a 6,800-μF capacitor via a boost converter. Generated voltage was increased from 0.3 V up to 3.2 V. Accumulated energy was used to power a Clark-type biosensor and a bluetooth transmitter with three sensors, a miniature electric motor and a light-emitting diode.


2017 ◽  
Vol 7 ◽  
pp. 184798041772742 ◽  
Author(s):  
Yi-Ta Wang ◽  
Yuan-Kuo Wang

The bio-electron-Fenton system integrates microbial fuel cell and Fenton process into a single system to destroy the organic and bio-refractory contaminants in wastewater. Its performance is closely dependent on the sufficient electron supplement by the oxidation process in anode chamber and the reduction process in cathode chamber. This article presents a novel cathode of a bio-electron-Fenton system which can simultaneously achieve good electron supplement and the wastewater treatment in cathode chamber. The cathode consists of indium-tin-oxide conductive glass on which layers of graphene-poly(vinyl alcohol) composite are sprayed by electrospinning. The material characterization is verified by Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The voltage, current, and power density of the system are verified by cyclic voltammetry. The wastewater treatment is verified by dye decolorization. With the addition ratio of 4 wt% graphene, the system achieves the optimal power density of 74.1 mW/m2, open-circuit voltage of 0.42 V, and the decolorization of reactive black 5 of 60.25%. By constant-resistance discharge testing within three-cycle, the system can stably supply a maximum voltage of 0.41 V or above. Hence, the proposed electrospun graphene-poly(vinyl alcohol) composite cathode electrode can not only improve the power-supply efficiency but also enhance the efficiency of wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document