sulfonated polyethersulfone
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 5)

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 813
Author(s):  
Soleyman Sahebi ◽  
Mohammad Kahrizi ◽  
Nasim Fadaie ◽  
Soheil Hadadpour ◽  
Bahman Ramavandi ◽  
...  

This study describes the fabrication of sulfonated polyethersulfone (SPES) as a super-hydrophilic substrate for developing a composite forward osmosis (FO) membrane on a nonwoven backing fabric support. SPES was prepared through an indirect sulfonation procedure and then blended with PES at a certain ratio. Applying SPES as the substrate affected membrane properties, such as porosity, total thickness, morphology, and hydrophilicity. The PES-based FO membrane with a finger-like structure had lower performance in comparison with the SPES based FO membrane having a sponge-like structure. The finger-like morphology changed to a sponge-like morphology with the increase in the SPES concentration. The FO membrane based on a more hydrophilic substrate via sulfonation had a sponge morphology and showed better water flux results. Water flux of 26.1 L m−2 h−1 and specific reverse solute flux of 0.66 g L−1 were attained at a SPES blend ratio of 50 wt.% when 3 M NaCl was used as the draw solution and DI water as feed solution under the FO mode. This work offers significant insights into understanding the factors affecting FO membrane performance, such as porosity and functionality.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3569
Author(s):  
Gadeer R. Ashour ◽  
Mahmoud A. Hussein ◽  
Tariq R. Sobahi ◽  
Khalid A. Alamry ◽  
Sara A. Alqarni ◽  
...  

In the current study, a variety of sulfonated polyethersulfone (SPES)-based ion-exchange membranes were prepared and utilized as efficient and selective solid adsorbents for the detection of Co(II) ions in aquatic solutions. SPES membranes were treated with a variety of cations at a 2:1 ratio overnight. The produced materials were assessed via XRD, FT-IR, SEM, and TGA analyses. The structure of these materials was confirmed by FT-IR and XRD, which also confirmed the inclusion of Na+, NH4+, and amberlite on the SPES surface successfully. TGA analysis showed that the thermal stabilities of these materials were enhanced, and the order of stability was NH4-SPES > SPES > Na-SPES > A-SPES. Furthermore, the efficiency of these modified membranes for the determination and adsorption of a variety of metal ions was also examined by the ICP-OES analytical technique. A-SPES expressed a powerful efficiency of adsorption, and it showed an efficient as well as quantitative adsorption at pH = 6. Moreover, A-SPES displayed the highest adsorption capacity of 90.13 mg/g for Co(II) through the Langmuir adsorption isotherm.


Sign in / Sign up

Export Citation Format

Share Document