scholarly journals Application of Pd-Based Membrane Reactors: An Industrial Perspective

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Emma Palo ◽  
Annarita Salladini ◽  
Barbara Morico ◽  
Vincenzo Palma ◽  
Antonio Ricca ◽  
...  

The development of a chemical industry characterized by resource efficiency, in particular with reference to energy use, is becoming a major issue and driver for the achievement of a sustainable chemical production. From an industrial point of view, several application areas, where energy saving and CO2 emissions still represent a major concern, can take benefit from the application of membrane reactors. On this basis, different markets for membrane reactors are analyzed in this paper, and their technical feasibility is verified by proper experimentation at pilot level relevant to the following processes: (i) pure hydrogen production; (ii) synthetic fuels production; (iii) chemicals production. The main outcomes of operations in the selected research lines are reported and discussed, together with the key obstacles to overcome.

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 219 ◽  
Author(s):  
David Alique ◽  
Giacomo Bruni ◽  
Raúl Sanz ◽  
José Antonio Calles ◽  
Silvano Tosti

Olive mill wastewater (OMW) presents high environmental impact due to the fact of its elevated organic load and toxicity, especially in Mediterranean countries. Its valorization for simultaneous pollutants degradation and green energy production is receiving great attention, mainly via steam reforming for hydrogen generation. Following previous works, the present research goes into detail about OMW valorization, particularly investigating for the first time the potential benefits of OMW–bioethanol mixtures co-reforming for ultra-pure hydrogen production in Pd-membrane reactors. In this manner, the typical large dilution of OMW and, hence, excess water can be used as a reactant for obtaining additional hydrogen from ethanol. Fresh OMW was previously conditioned by filtration and distillation processes, analyzing later the effect of pressure (1–5 bar), oxidizing conditions (N2 or air as carrier gas), gas hourly space velocity (150–1500 h−1), and alcohol concentration on the co-reforming process (5–10% v/v). In all cases, the exploitation of OMW as a source of environmentally friendly hydrogen was demonstrated, obtaining up to 30 NmL·min−1 of pure H2 at the most favorable experimental conditions. In the membrane reactor, higher pressures up to 5 bar promoted both total H2 production and pure H2 recovery due to the increase in the permeate flux despite the negative effect on reforming thermodynamics. The increase of ethanol concentration also provoked a positive effect, although not in a proportional relation. Thus, a greater effect was obtained for the increase from 5% to 7.5% v/v in comparison to the additional improvement up to 10% v/v. On the contrary, the use of oxidative conditions slightly decreased the hydrogen production rate, while the effect of gas hourly space velocity needs to be carefully analyzed due to the contrary effect on potential total H2 generation and pure H2 recovery.


2007 ◽  
Vol 61 (2) ◽  
Author(s):  
K. Svoboda ◽  
A. Siewiorek ◽  
D. Baxter ◽  
J. Rogut ◽  
M. Punčochář

AbstractThe reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.


2019 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Marina Holgado ◽  
David Alique

Hydrogen, as an energy carrier, can take the main role in the transition to a new energy model based on renewable sources. However, its application in the transport sector is limited by its difficult storage and the lack of infrastructure for its distribution. On-board H2 production is proposed as a possible solution to these problems, especially in the case of considering renewable feedstocks such as bio-ethanol or bio-methane. This work addresses a first approach for analyzing the viability of these alternatives by using Pd-membrane reactors in polymer electrolyte membrane fuel cell (PEM-FC) vehicles. It has been demonstrated that the use of Pd-based membrane reactors enhances hydrogen productivity and provides enough pure hydrogen to feed the PEM-FC requirements in one single step. Both alternatives seem to be feasible, although the methane-based on-board hydrogen production offers some additional advantages. For this case, it is possible to generate 1.82 kmol h−1 of pure H2 to feed the PEM-FC while minimizing the CO2 emissions to 71 g CO2/100 km. This value would be under the future emissions limits proposed by the European Union (EU) for year 2020. In this case, the operating conditions of the on-board reformer are T = 650 °C, Pret = 10 bar and H2O/CH4 = 2.25, requiring 1 kg of catalyst load and a membrane area of 1.76 m2.


Author(s):  
A. Iulianelli ◽  
◽  
G. Bagnato ◽  
A. Iulianelli ◽  
A. Vita Vita ◽  
...  

2010 ◽  
Vol 2 (3) ◽  
pp. 207-222 ◽  
Author(s):  
Fausto Gallucci ◽  
Angelo Basile ◽  
Adolfo Iulianelli ◽  
Hans J.A.M. Kuipers

2009 ◽  
Vol 2 (3) ◽  
pp. 207-222 ◽  
Author(s):  
Fausto Gallucci ◽  
Angelo Basile ◽  
Adolfo Iulianelli ◽  
Hans Kuipers

Sign in / Sign up

Export Citation Format

Share Document