scholarly journals Preliminary Equipment Design for On-Board Hydrogen Production by Steam Reforming in Palladium Membrane Reactors

2019 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Marina Holgado ◽  
David Alique

Hydrogen, as an energy carrier, can take the main role in the transition to a new energy model based on renewable sources. However, its application in the transport sector is limited by its difficult storage and the lack of infrastructure for its distribution. On-board H2 production is proposed as a possible solution to these problems, especially in the case of considering renewable feedstocks such as bio-ethanol or bio-methane. This work addresses a first approach for analyzing the viability of these alternatives by using Pd-membrane reactors in polymer electrolyte membrane fuel cell (PEM-FC) vehicles. It has been demonstrated that the use of Pd-based membrane reactors enhances hydrogen productivity and provides enough pure hydrogen to feed the PEM-FC requirements in one single step. Both alternatives seem to be feasible, although the methane-based on-board hydrogen production offers some additional advantages. For this case, it is possible to generate 1.82 kmol h−1 of pure H2 to feed the PEM-FC while minimizing the CO2 emissions to 71 g CO2/100 km. This value would be under the future emissions limits proposed by the European Union (EU) for year 2020. In this case, the operating conditions of the on-board reformer are T = 650 °C, Pret = 10 bar and H2O/CH4 = 2.25, requiring 1 kg of catalyst load and a membrane area of 1.76 m2.

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Emma Palo ◽  
Annarita Salladini ◽  
Barbara Morico ◽  
Vincenzo Palma ◽  
Antonio Ricca ◽  
...  

The development of a chemical industry characterized by resource efficiency, in particular with reference to energy use, is becoming a major issue and driver for the achievement of a sustainable chemical production. From an industrial point of view, several application areas, where energy saving and CO2 emissions still represent a major concern, can take benefit from the application of membrane reactors. On this basis, different markets for membrane reactors are analyzed in this paper, and their technical feasibility is verified by proper experimentation at pilot level relevant to the following processes: (i) pure hydrogen production; (ii) synthetic fuels production; (iii) chemicals production. The main outcomes of operations in the selected research lines are reported and discussed, together with the key obstacles to overcome.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 219 ◽  
Author(s):  
David Alique ◽  
Giacomo Bruni ◽  
Raúl Sanz ◽  
José Antonio Calles ◽  
Silvano Tosti

Olive mill wastewater (OMW) presents high environmental impact due to the fact of its elevated organic load and toxicity, especially in Mediterranean countries. Its valorization for simultaneous pollutants degradation and green energy production is receiving great attention, mainly via steam reforming for hydrogen generation. Following previous works, the present research goes into detail about OMW valorization, particularly investigating for the first time the potential benefits of OMW–bioethanol mixtures co-reforming for ultra-pure hydrogen production in Pd-membrane reactors. In this manner, the typical large dilution of OMW and, hence, excess water can be used as a reactant for obtaining additional hydrogen from ethanol. Fresh OMW was previously conditioned by filtration and distillation processes, analyzing later the effect of pressure (1–5 bar), oxidizing conditions (N2 or air as carrier gas), gas hourly space velocity (150–1500 h−1), and alcohol concentration on the co-reforming process (5–10% v/v). In all cases, the exploitation of OMW as a source of environmentally friendly hydrogen was demonstrated, obtaining up to 30 NmL·min−1 of pure H2 at the most favorable experimental conditions. In the membrane reactor, higher pressures up to 5 bar promoted both total H2 production and pure H2 recovery due to the increase in the permeate flux despite the negative effect on reforming thermodynamics. The increase of ethanol concentration also provoked a positive effect, although not in a proportional relation. Thus, a greater effect was obtained for the increase from 5% to 7.5% v/v in comparison to the additional improvement up to 10% v/v. On the contrary, the use of oxidative conditions slightly decreased the hydrogen production rate, while the effect of gas hourly space velocity needs to be carefully analyzed due to the contrary effect on potential total H2 generation and pure H2 recovery.


2007 ◽  
Vol 539-543 ◽  
pp. 1403-1408 ◽  
Author(s):  
Isamu Yasuda ◽  
Yoshinori Shirasaki

A membrane reformer is composed of a steam reformer equipped with palladium-based alloy modules in its catalyst bed, and can perform steam reforming reaction and hydrogen separation processes simultaneously, without shift converters and purification systems. It thus can be configured much more compactly and can provide much higher efficiency than the conventional technologies. We have manufactured and tested a world-largest scale membrane reformer with a rated hydrogen production capacity of 40 Nm3/h. The operation test has successfully been proceeding for over 3,000 hours in one of the hydrogen refueling stations in Tokyo, which has demonstrated the potential advantages of the membrane reformer: simple system configuration as benefited by single-step production of high-purity (99.999% level) hydrogen from natural gas, compactness and energy efficiency as high as 70 to 76% under both the rated and partial-load operating conditions. The system has thus been proved to give the highest efficiency in producing hydrogen from natural gas among various competing technologies. The paper will present the latest achievements and the future plan of the membrane reformer technology development.


Author(s):  
Nataliia Kovalenko ◽  
Taras Hutsol ◽  
Oleksander Labenko ◽  
Szymon Glowacki ◽  
Dmytro Sorokin

Hydrogen production from biomass may become one of the leading areas of bioenergy in Ukraine soon.Currently, the main direction of biomass energy production in Ukraine is the production of thermal energy for distributed heat supply of enterprises and private households by burning biomass of wood and agricultural origin. Nowadays in Ukraine, there is a technology for the production of biohydrogen. We calculated the environmental and economic effects of hydrogen production as a source of energy. We have come up with the following conclusion that if there is a demand for the final product, hydrogen production will be attractive from economic standpoint and will not require a green tariff or other support from the government.The market price of biohydrogen will be $ 4-5 per kg and will be comparable to that which the European Union aims to achieve.We assume that hydrogen may be a cleaner source of energy for end users, especially in the transport sector in the future.One of the main issues of Ukraine's possible participation in Europe's hydrogen energy program as a supplier and producer of renewable hydrogen is the possibility of its technically safe and cost-effective transportation to EU countries.As the main hypothesis considered transportation of hydrogen using the gas transmission system of Ukraine as part of a mixture with natural gas. Calculations show that, of course, obtaining energy from hydrogen, even in mass production, will be more expensive than alternative traditional and non-traditional methods. The development of this technology, in any case, is promising in terms of the development of energy independence and environmental development of states. The effect of scale in mass production of hydrogen energy should also work, which will significantly reduce the cost of this technology.  


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 691
Author(s):  
Catia Algieri ◽  
Gerardo Coppola ◽  
Debolina Mukherjee ◽  
Mahaad Issa Shammas ◽  
Vincenza Calabro ◽  
...  

Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The number of studies devoted to applying CMR with higher membrane area per unit volume in multi-phase reactions remains very limited for both catalytic polymeric and inorganic membranes. The various bio-based catalytic membrane system is also used in a different commercial application. The opportunities and advantages offered by applying catalytic membrane reactors to multi-phase systems need to be further explored. In this review, the preparation and the application of inorganic membrane reactors in the different catalytic processes as water gas shift (WGS), Fisher Tropsch synthesis (FTS), selective CO oxidation (CO SeLox), and so on, have been discussed.


2014 ◽  
Vol 12 (1) ◽  
pp. 333-344 ◽  
Author(s):  
Yacine Benguerba ◽  
Christine Dumas ◽  
Barbara Ernst

Abstract Autothermal reforming of CH4 in a membrane catalytic microreactor for the production of hydrogen at different temperatures over supported Ni catalysts has been studied. A three-dimensional mathematical model was developed using a computational fluid dynamics (CFD) technique. The effect of using different membranes on the performance of the micro-reactor was analysed. The amounts of hydrogen produced and separated in each case, under the same operating conditions, were compared. It was proven that using the porous membrane (Ni–Al2O3) could be an economic solution for the production and separation of hydrogen in membrane reactors.


2020 ◽  
Vol 141 ◽  
pp. 01009
Author(s):  
Lida Simasatitkul ◽  
Suksun Amornraksa ◽  
Natcha Wangprasert ◽  
Thanaporn Wongjirasavat

Proton exchange membrane fuel cell (PEMFC) is an interesting option for electricity generation. However, the usage of pure hydrogen feeding to PEMFC faces many problems such as high price and gas storage capacity. On-board fuel processor integrated with PEMFC is therefore a more preferable option. Two hydrogen production processes from crude ethanol feed, a by-product of fermentation of corn stover, integrated with PEMFC were developed and proposed. They are steam reforming (SR) process integrated with PEMFC and steam reforming process coupled with a CO preferential oxidation (COPROX) reactor with PEMFC. The results showed that the optimal operating conditions for both processes were similar i.e. S/F ratio of 9, WGS reactor temperature of 250oC and membrane area of 0.6 m2. However, the optimal SR temperature of both processes were different i.e. 500oC and 460oC. Both processes produced pure hydrogen gas at 0.53 mol/s. The energy requirement of the SR process alone was higher than SR process coupled with a COPROX about 0.19 MW. The produced hydrogen gas entered PEMFC at current density of 1.1 A cm-2, generating the power at of 0.44 W cm-2.


Author(s):  
John Grace ◽  
Said S.E.H. Elnashaie ◽  
C. Jim Lim

Fluidized Bed Membrane Reactors (FBMR) offer significant advantages for steam reforming and the production of hydrogen. Potential advantages include higher yields by reducing thermodynamic equilibrium limitations, process intensification by combining three vessels into one, reduced temperatures of operation, countering the adverse effects of pressure, virtually eliminating catalyst diffusional limitations, high productivity per unit volume of reformer, and flexibility in using alternative feedstocks. Realization of the FBMR process for hydrogen production requires that a number of unusual challenges in reactor design be met. This paper discusses the technical challenges and outlines key factors which are being addressed in providing the membranes, reactor configuration and integrity, catalyst, energy integration and operating conditions needed to establish an economically viable FBMR process.


2018 ◽  
Vol 1 (1) ◽  
pp. 175-181
Author(s):  
Miloš Poliak ◽  
Patrícia Šimurková ◽  
Marek Jaśkiewicz ◽  
Dariusz Więckowski

Abstract International road transport is a specific service within the frame of services provided in the European Union. It is because the conditions of being active on the market are influenced by the states where businessmen operate, but services can be provided throughout the whole year in other member states of the European Union. The aim of the contribution is to highlight the existing problems in international road freight transport sector. These problems persist despite the fact that market access was exempted from the national law of individual member states and regulated directly by EU regulations. Despite the unification of market access, tax and social harmonization is not ensured in international road freight transport. An unequal tax burden on carriers and different requirements of wage regulations create a discriminatory environment among entrepreneurs. The contribution identifies the factors that deform the equal operating conditions in single market. The aim of the contribution is also to provide the readers with the answers to the questions: Is it possible under current EU conditions to harmonize tax and social conditions? What impact would this harmonization have on business environment?


Sign in / Sign up

Export Citation Format

Share Document