scholarly journals Self-Supporting Microchannel Liquid-Cooled Plate for T/R Modules Based on Additive Manufacturing: Study on Its Pass Design, Formation Process and Boiling Heat Transfer Performance

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1731
Author(s):  
Bo Qian ◽  
Hongri Fan ◽  
Gang Liu ◽  
Jianrui Zhang ◽  
Pei Li

The additive manufacturing technology of laser-based powder bed fusion (L-PBF), which is used to produce boiling heat transfer structures, offers a high processing flexibility and can provide lattice structures with a high surface-to-volume ratio. As an important part of the phased array radar, the plentiful transmit/receive (T/R) modules can generate considerable heat. Targeting this local overheating problem, this study discusses the pass design, the optimal formation process, and boiling heat transfer performance of microchannel liquid-cooled plates based on L-PBF additive manufacturing technology. The optimum design and process parameters were obtained by performing basic channel experiments. On this basis, the design and formation experiments of the microchannel structure were performed, and then the porosity and pore morphology of microchannel liquid-cooled plate samples were analysed. The boiling heat transfer experiments were conducted with deionised water, and the boiling heat transfer characteristics were compared with the saturated boiling curve of a traditional copper-tube liquid-cooled plate. The average wall temperature of the designed samples decreased by 4% compared with that of the traditional liquid-cooled plate under the same heat flow density the value reduced from 111.9 °C to 108.2 °C. Furthermore, within the same optimal boiling temperature range, the average heat flow densities of all the prepared samples increased by >60% compared with those of the traditional liquid-cooled plate the value increased from minimum 16 W∙cm−2 to maximum 34 W∙cm−2. The self-supporting microchannel structure can considerably improve the heat dissipation effect of T/R modules and solve the local overheating problem.

NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950124
Author(s):  
Hao Zhang ◽  
Zeng-en Li ◽  
Shan Qing ◽  
Zhuangzhuang Jia ◽  
Jiarui Xu ◽  
...  

Nucleate pool boiling heat transfer experiments have been conducted to nanofluids on a horizontal cylinder tube under atmospheric pressure. The nanofluids are prepared by dispersing Al2O3 nanoparticles into distilled water at concentrations of 0.001, 0.01, 0.1, 1 and 2[Formula: see text]wt.% with or without sodium, 4-dodecylbenzenesulfonate (SDBS). The experimental results showed that: nanofluids at lower concentrations (0.001[Formula: see text]wt.% to 1[Formula: see text]wt.%) can obviously enhance the pool boiling heat transfer performance, but signs of deterioration can be observed at higher concentration (2[Formula: see text]wt.%). The presence of SDBS can obviously enhance the pool boiling heat transfer performance, and with the presence of SDBS, a maximum enhancement ratio of BHTC of 69.88%, and a maximum decrease ratio of super heat of 41.12% can be found in Group NS5 and NS4, respectively. The tube diameter and wall thickness of heating surface are the influential factors for boiling heat transfer coefficient. Besides, we find that Rohsenow formula failed to predict the characteristics of nanofluids. The mechanism study shows that: the decrease of surface tension, which leads to the decrease of bubble departure diameter, and the presence of agglomerates in nanofluids are the reasons for the enhanced pool boiling heat transfer performance. At higher concentration, particle deposition will lead to the decrease of distribution density of the vaporization core, and as a result of that, the boiling heat transfer performance will deteriorate.


Sign in / Sign up

Export Citation Format

Share Document