local overheating
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
WEI LIU ◽  
YUE ZHAO ◽  
YUMEI SONG ◽  
Cong Wang ◽  
ying ZHANG

Abstract In recent years, Chinese power enterprises have adopted SF6/N2 to replace SF6 gas in transmission electrical equipment. In this paper, an experimental platform was set up to simulate the local overheating fault of gas insulated electrical equipment. The relationship between the decomposition products of SF6/N2 gas and temperature, experimental time, gas pressure and SF6 content was studied. The results showed that the main products of SF6/N2 gas decomposition were SO2, SO2F2, N2O, C2F6, COS, CS2 and CF4. The content of SO2 increased nonlinearly with the increase of temperature, experimental time, gas pressure and SF6 content. However, the contents of SO2F2, N2O, C2F6, COS, CS2 and CF4 decreased first and remained unchanged with the increase of gas pressure, and increased with the increase of temperature, experimental time and SF6 content. And C element in metal also affected the type and quantity of gas products.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1731
Author(s):  
Bo Qian ◽  
Hongri Fan ◽  
Gang Liu ◽  
Jianrui Zhang ◽  
Pei Li

The additive manufacturing technology of laser-based powder bed fusion (L-PBF), which is used to produce boiling heat transfer structures, offers a high processing flexibility and can provide lattice structures with a high surface-to-volume ratio. As an important part of the phased array radar, the plentiful transmit/receive (T/R) modules can generate considerable heat. Targeting this local overheating problem, this study discusses the pass design, the optimal formation process, and boiling heat transfer performance of microchannel liquid-cooled plates based on L-PBF additive manufacturing technology. The optimum design and process parameters were obtained by performing basic channel experiments. On this basis, the design and formation experiments of the microchannel structure were performed, and then the porosity and pore morphology of microchannel liquid-cooled plate samples were analysed. The boiling heat transfer experiments were conducted with deionised water, and the boiling heat transfer characteristics were compared with the saturated boiling curve of a traditional copper-tube liquid-cooled plate. The average wall temperature of the designed samples decreased by 4% compared with that of the traditional liquid-cooled plate under the same heat flow density the value reduced from 111.9 °C to 108.2 °C. Furthermore, within the same optimal boiling temperature range, the average heat flow densities of all the prepared samples increased by >60% compared with those of the traditional liquid-cooled plate the value increased from minimum 16 W∙cm−2 to maximum 34 W∙cm−2. The self-supporting microchannel structure can considerably improve the heat dissipation effect of T/R modules and solve the local overheating problem.


Author(s):  
I. A. Pankovets ◽  
V. I. Voznaya ◽  
A. V. Vedeneev ◽  
M. N. Vereshchagin

Quality of long products surface is an important consumer property of it. In the process of measures elaboration aimed at the increase of long products surface quality, in particular of bars produced at the mill 370/150 of ОJSC “BMZ – managing company of holding “BMK”, studies were accomplished by metallographic laboratory. It was established that defects being revealed at the bars finishing, don’t relate to the quality of continuously casted billet (CCB), but formed in the process of deformation. Studies of the mechanism of surface defects formation on hot-rolled bar of rolling origin – deformation fissure and wrinkles were carried out. Results of numerical simulation of rolling in roughing group of stands at various temperature-deformation parameters presented. Regularities of formation of surface defects on the bar in the finished product were revealed. It was shown that the reason of the surface defects of rolling origin – deformation fissure and wrinkles was a high temperature gradient between the core and the surface of billet, originated from local overheating of surface in the angles zone of CCB resulted in nonuniformity of drawing out of different layers of the billet being deformed. To eliminate the defects, minimum possible temperature gradient between the surface and the core of a billet by controlled rolls cooling should be provided. By calculation, the maximum permissible temperature of the working surface of the rolls of the rough group of stands was established, and empirically the actual temperatures of the rolls with the current production technology, as well as the temperature of the rolls support bearings seats of the rolls were measured. The technical and technological possibilities for improving of rolling technology on a bar and wire mill in order to improve the surface quality of rolled bars were demonstrated. The existing technology was adjusted and new technological modes of rolling with controlled cooling of the rolls were established, which made it possible to significantly reduce the rejection of the finished product due to defects in rolling production. A device was proposed for the roughing group of stands, which enables to minimize the ingress of coolant onto the bar rolled.


2021 ◽  
Vol 2058 (1) ◽  
pp. 012032
Author(s):  
V S Belov ◽  
E A Bobkov ◽  
V A Oleschenko ◽  
A V Kabashin ◽  
V Yu Timoshenko

Abstract Temperature oscillations (pulsations) were detected in aqueous suspensions of silicon (Si) nanoparticles NPs under laser irradiation with highly absorbed light. The temperature pulsation frequency was found to depend on the NPs concentration in suspension and laser irradiation power. The observed phenomenon is assumed to be caused by the local overheating of Si NPs close to the boiling point of water, while the average heating of the surrounding liquid was insignificant. The observed phenomenon is discussed in view of potential applications in local photo-induced hyperthermia of cancer.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


Author(s):  
Marcel Simons ◽  
Tim Radel ◽  
Frank Vollertsen

AbstractThe laser chemical process is a material-removing machining process in the micro range. The process is based on a laser-assisted etching process between an electrolyte and a metallic workpiece. Local overheating causes a laser-induced electrolyte boiling process, which limits the laser chemical process window. In order to reduce the laser-induced electrolyte boiling process and thus expand the process window, the laser chemical process is carried out at different electrolyte start temperatures and thus different electrolyte viscosities and surface tensions. The experimental investigations were carried out on Titanium Grade 1 with the electrolytes phosphoric acid and sulfuric acid at different electrolyte temperatures and laser powers to determine the limits of the process window by evaluating the properties of the removal cavities. As a result, the process window is extended at lower electrolyte viscosities. Thereby, the electrolyte viscosities have no influence on the geometric shape of the removal. The extension of the process window is attributed to the fact that a reduction in electrolyte viscosity results in a less pronounced formation of the boiling process, the bubble diameters decrease, and the shielding effect of the bubbles is reduced.


Author(s):  
Rameez Israr ◽  
Johannes Buhl ◽  
Markus Bambach

AbstractWire-arc additive manufacturing (WAAM) provides an alternative for the production of various metal products needed in medium to large batch sizes due to its high deposition rates. However, the cyclic heat input in WAAM may cause local overheating. To avoid adverse effects on the performance of the part, interlayer dwelling and active cooling are used, but these measures increase the process time. Alternatively, the temperature during the WAAM process could be controlled by optimizing the welding power. The present work aims at introducing and implementing a novel temperature management approach by adjusting the weld-bead cross-section along with the welding power to reduce the heat accumulation in the WAAM process. The temperature evolution during welding of weld beads of different cross-sections is investigated and a database of the relation between optimal welding power for beads of various sizes and different pre-heating temperatures was established. The numerical results are validated experimentally with a block-shaped geometry. The results show that by the proposed method, the test shape made was welded with lower energy consumption and process time as compared to conventional constant-power WAAM. The proposed approach efficiently manages the thermal input and reduces the need for pausing the process. Hence, the defects related to heat accumulation might be reduced, and the process efficiency increased.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1976
Author(s):  
Janusz Petryna ◽  
Arkadiusz Duda ◽  
Maciej Sułowicz

In the condition monitoring of induction machines operating in various industry sectors, the assessment of eccentricity is as important as the assessment of the condition of windings, bearings, mechanical vibrations or noise. The reasons for the eccentricity can be various; for example, rotor imbalance, damage or wear of the bearings, improper alignment of the rotor and the load machine and finally, assembly errors after overhaul. Disregard of this phenomenon during routine tests may result in the development of vibrations transmitted to the stator windings, faster wear of the bearings and even, in extreme cases, rubbing of the rotor against the stator surface and damage to the windings and local overheating of the machine core. On the basis of years of experience in the diagnosis of large induction machines operating in various industries, the article deals with the problem of developing reliable indicators for assessing the levels of commonly accepted types of eccentricity. Starting from field calculations and analyzing various cases of eccentricity, the methodology for determining the indicators for evaluation from the stator current spectrum is shown. The changes in the values of these indices for various cases of simultaneous occurrence of static and dynamic eccentricity are shown. The calculation results were verified in the laboratory. Also shown are three interesting cases from diagnostic practice in the evaluation of high-power machines in the industry. It has been shown that the proposed indicators are useful and enable an accurate diagnosis of levels of eccentricity.


2021 ◽  
Author(s):  
Rameez Israr ◽  
Johannes Buhl ◽  
Markus Bambach

Abstract Wire-Arc Additive Manufacturing (WAAM) provides an alternative for the production of various metal products needed in small to medium batch sizes due to its high deposition rates. However, the cyclic heat input in WAAM may cause local overheating. To avoid adverse effects on the performance of the part, interlayer dwelling and active cooling are used, but these measures increase the process time. Alternatively, the temperature during the WAAM process could be controlled by optimizing the welding power. The present work aims at introducing and implementing a novel temperature management approach by adjusting the weld-bead cross-section along with the welding power to reduce the heat accumulation in the WAAM process. The temperature evolution during welding of weld beads of different cross-sections is investigated and a database of the relation between optimal welding power for beads of various sizes and different pre-heating temperatures was established. The numerical results are validated experimentally with a block-shaped geometry. The results show that by the proposed method, the test shape made was welded with lower energy consumption and process time as compared to conventional constant-power WAAM. The proposed approach efficiently manages the thermal input and reduces the need for pausing the process. Hence, the defects related to heat accumulation might be reduced, and the process efficiency increased.


Author(s):  
A. S. Tonkoshkur ◽  
A. V. Ivanchenko

One of the main problems in ensuring the reliability of solar electrical power sources is local overheating, when hot spots form in photovoltaic cells of solar arrays. It is currently considered that these negative phenomena are caused, among other things, by overvoltage in the electrical circuits of solar arrays. This leads to the appearance of defective elements and a significant decrease in the functionality of the entire power generation system up to its complete failure. This study considers the possible ways to increase the reliability of solar arrays by using thermistor thermocontacting layers for preventing overvoltage events and overheating. The authors use simulation to study electrical characteristics of a photovoltaic cell in thermal contact with an additional layer based on thermistor materials with a metal to semiconductor phase transition. Vanadium dioxide with a phase transition temperature of ~340 K is considered to be a promising material for this purpose. During the phase transition, electrical resistance sharply decreases from the values characteristic of dielectrics to the values associated with metal conductors. It is shown that such thermistor layers can be used for protecting solar cells from electrical overheating under the following basic conditions: — the layer’s resistance in the «cold» state significantly exceeds that of the lightened forward-biased solar cell; — the layer’s resistance in the «heated» state is sufficiently low compared to those of the reverse-biased photovoltaic cell and of the power source. The current and temperature of the reverse-biased photovoltaic cell are limited and stabilized, and the voltage drop sharply decreases from the moment when the temperature of the thermistor layer reaches the values close to the temperature of its transition to the low-conductivity state. The obtained results substantiate the potntial of the described approach to protect photovoltaic cells of solar modules against electric thermal overloads.


Sign in / Sign up

Export Citation Format

Share Document